This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a class abstraction involving a subset. Unlike elabg , A does not have to be a set. (Contributed by NM, 29-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elssabg.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| Assertion | elssabg | |- ( B e. V -> ( A e. { x | ( x C_ B /\ ph ) } <-> ( A C_ B /\ ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssabg.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | ssexg | |- ( ( A C_ B /\ B e. V ) -> A e. _V ) |
|
| 3 | 2 | expcom | |- ( B e. V -> ( A C_ B -> A e. _V ) ) |
| 4 | 3 | adantrd | |- ( B e. V -> ( ( A C_ B /\ ps ) -> A e. _V ) ) |
| 5 | sseq1 | |- ( x = A -> ( x C_ B <-> A C_ B ) ) |
|
| 6 | 5 1 | anbi12d | |- ( x = A -> ( ( x C_ B /\ ph ) <-> ( A C_ B /\ ps ) ) ) |
| 7 | 6 | elab3g | |- ( ( ( A C_ B /\ ps ) -> A e. _V ) -> ( A e. { x | ( x C_ B /\ ph ) } <-> ( A C_ B /\ ps ) ) ) |
| 8 | 4 7 | syl | |- ( B e. V -> ( A e. { x | ( x C_ B /\ ph ) } <-> ( A C_ B /\ ps ) ) ) |