This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed set in a perfectly normal space is a countable intersection of open sets. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pnrmcld | |- ( ( J e. PNrm /\ A e. ( Clsd ` J ) ) -> E. f e. ( J ^m NN ) A = |^| ran f ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ispnrm | |- ( J e. PNrm <-> ( J e. Nrm /\ ( Clsd ` J ) C_ ran ( f e. ( J ^m NN ) |-> |^| ran f ) ) ) |
|
| 2 | 1 | simprbi | |- ( J e. PNrm -> ( Clsd ` J ) C_ ran ( f e. ( J ^m NN ) |-> |^| ran f ) ) |
| 3 | 2 | sselda | |- ( ( J e. PNrm /\ A e. ( Clsd ` J ) ) -> A e. ran ( f e. ( J ^m NN ) |-> |^| ran f ) ) |
| 4 | eqid | |- ( f e. ( J ^m NN ) |-> |^| ran f ) = ( f e. ( J ^m NN ) |-> |^| ran f ) |
|
| 5 | 4 | elrnmpt | |- ( A e. ( Clsd ` J ) -> ( A e. ran ( f e. ( J ^m NN ) |-> |^| ran f ) <-> E. f e. ( J ^m NN ) A = |^| ran f ) ) |
| 6 | 5 | adantl | |- ( ( J e. PNrm /\ A e. ( Clsd ` J ) ) -> ( A e. ran ( f e. ( J ^m NN ) |-> |^| ran f ) <-> E. f e. ( J ^m NN ) A = |^| ran f ) ) |
| 7 | 3 6 | mpbid | |- ( ( J e. PNrm /\ A e. ( Clsd ` J ) ) -> E. f e. ( J ^m NN ) A = |^| ran f ) |