This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being perfectly normal. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ispnrm | |- ( J e. PNrm <-> ( J e. Nrm /\ ( Clsd ` J ) C_ ran ( f e. ( J ^m NN ) |-> |^| ran f ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( j = J -> ( Clsd ` j ) = ( Clsd ` J ) ) |
|
| 2 | oveq1 | |- ( j = J -> ( j ^m NN ) = ( J ^m NN ) ) |
|
| 3 | 2 | mpteq1d | |- ( j = J -> ( f e. ( j ^m NN ) |-> |^| ran f ) = ( f e. ( J ^m NN ) |-> |^| ran f ) ) |
| 4 | 3 | rneqd | |- ( j = J -> ran ( f e. ( j ^m NN ) |-> |^| ran f ) = ran ( f e. ( J ^m NN ) |-> |^| ran f ) ) |
| 5 | 1 4 | sseq12d | |- ( j = J -> ( ( Clsd ` j ) C_ ran ( f e. ( j ^m NN ) |-> |^| ran f ) <-> ( Clsd ` J ) C_ ran ( f e. ( J ^m NN ) |-> |^| ran f ) ) ) |
| 6 | df-pnrm | |- PNrm = { j e. Nrm | ( Clsd ` j ) C_ ran ( f e. ( j ^m NN ) |-> |^| ran f ) } |
|
| 7 | 5 6 | elrab2 | |- ( J e. PNrm <-> ( J e. Nrm /\ ( Clsd ` J ) C_ ran ( f e. ( J ^m NN ) |-> |^| ran f ) ) ) |