This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *5.18 of WhiteheadRussell p. 124. This theorem says that logical equivalence is the same as negated "exclusive or". (Contributed by NM, 28-Jun-2002) (Proof shortened by Andrew Salmon, 20-Jun-2011) (Proof shortened by Wolf Lammen, 15-Oct-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm5.18 | |- ( ( ph <-> ps ) <-> -. ( ph <-> -. ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.501 | |- ( ph -> ( -. ps <-> ( ph <-> -. ps ) ) ) |
|
| 2 | 1 | con1bid | |- ( ph -> ( -. ( ph <-> -. ps ) <-> ps ) ) |
| 3 | pm5.501 | |- ( ph -> ( ps <-> ( ph <-> ps ) ) ) |
|
| 4 | 2 3 | bitr2d | |- ( ph -> ( ( ph <-> ps ) <-> -. ( ph <-> -. ps ) ) ) |
| 5 | nbn2 | |- ( -. ph -> ( -. -. ps <-> ( ph <-> -. ps ) ) ) |
|
| 6 | 5 | con1bid | |- ( -. ph -> ( -. ( ph <-> -. ps ) <-> -. ps ) ) |
| 7 | nbn2 | |- ( -. ph -> ( -. ps <-> ( ph <-> ps ) ) ) |
|
| 8 | 6 7 | bitr2d | |- ( -. ph -> ( ( ph <-> ps ) <-> -. ( ph <-> -. ps ) ) ) |
| 9 | 4 8 | pm2.61i | |- ( ( ph <-> ps ) <-> -. ( ph <-> -. ps ) ) |