This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *4.55 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm4.55 | |- ( -. ( -. ph /\ ps ) <-> ( ph \/ -. ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.54 | |- ( ( -. ph /\ ps ) <-> -. ( ph \/ -. ps ) ) |
|
| 2 | 1 | con2bii | |- ( ( ph \/ -. ps ) <-> -. ( -. ph /\ ps ) ) |
| 3 | 2 | bicomi | |- ( -. ( -. ph /\ ps ) <-> ( ph \/ -. ps ) ) |