This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for paddass . Combine paddasslem1 , paddasslem2 , and paddasslem3 . (Contributed by NM, 8-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddasslem.l | |- .<_ = ( le ` K ) |
|
| paddasslem.j | |- .\/ = ( join ` K ) |
||
| paddasslem.a | |- A = ( Atoms ` K ) |
||
| Assertion | paddasslem4 | |- ( ( ( ( K e. HL /\ p e. A /\ r e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) /\ ( p =/= z /\ x =/= y /\ -. r .<_ ( x .\/ y ) ) ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) -> E. s e. A ( s .<_ ( x .\/ y ) /\ s .<_ ( p .\/ z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddasslem.l | |- .<_ = ( le ` K ) |
|
| 2 | paddasslem.j | |- .\/ = ( join ` K ) |
|
| 3 | paddasslem.a | |- A = ( Atoms ` K ) |
|
| 4 | simpl11 | |- ( ( ( ( K e. HL /\ p e. A /\ r e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) /\ ( p =/= z /\ x =/= y /\ -. r .<_ ( x .\/ y ) ) ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) -> K e. HL ) |
|
| 5 | simpl21 | |- ( ( ( ( K e. HL /\ p e. A /\ r e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) /\ ( p =/= z /\ x =/= y /\ -. r .<_ ( x .\/ y ) ) ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) -> x e. A ) |
|
| 6 | simpl13 | |- ( ( ( ( K e. HL /\ p e. A /\ r e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) /\ ( p =/= z /\ x =/= y /\ -. r .<_ ( x .\/ y ) ) ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) -> r e. A ) |
|
| 7 | simpl22 | |- ( ( ( ( K e. HL /\ p e. A /\ r e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) /\ ( p =/= z /\ x =/= y /\ -. r .<_ ( x .\/ y ) ) ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) -> y e. A ) |
|
| 8 | 5 6 7 | 3jca | |- ( ( ( ( K e. HL /\ p e. A /\ r e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) /\ ( p =/= z /\ x =/= y /\ -. r .<_ ( x .\/ y ) ) ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) -> ( x e. A /\ r e. A /\ y e. A ) ) |
| 9 | simpl12 | |- ( ( ( ( K e. HL /\ p e. A /\ r e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) /\ ( p =/= z /\ x =/= y /\ -. r .<_ ( x .\/ y ) ) ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) -> p e. A ) |
|
| 10 | simpl23 | |- ( ( ( ( K e. HL /\ p e. A /\ r e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) /\ ( p =/= z /\ x =/= y /\ -. r .<_ ( x .\/ y ) ) ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) -> z e. A ) |
|
| 11 | 9 10 | jca | |- ( ( ( ( K e. HL /\ p e. A /\ r e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) /\ ( p =/= z /\ x =/= y /\ -. r .<_ ( x .\/ y ) ) ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) -> ( p e. A /\ z e. A ) ) |
| 12 | 4 8 11 | 3jca | |- ( ( ( ( K e. HL /\ p e. A /\ r e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) /\ ( p =/= z /\ x =/= y /\ -. r .<_ ( x .\/ y ) ) ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) -> ( K e. HL /\ ( x e. A /\ r e. A /\ y e. A ) /\ ( p e. A /\ z e. A ) ) ) |
| 13 | simpl32 | |- ( ( ( ( K e. HL /\ p e. A /\ r e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) /\ ( p =/= z /\ x =/= y /\ -. r .<_ ( x .\/ y ) ) ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) -> x =/= y ) |
|
| 14 | simpl33 | |- ( ( ( ( K e. HL /\ p e. A /\ r e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) /\ ( p =/= z /\ x =/= y /\ -. r .<_ ( x .\/ y ) ) ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) -> -. r .<_ ( x .\/ y ) ) |
|
| 15 | 1 2 3 | paddasslem1 | |- ( ( ( K e. HL /\ ( x e. A /\ r e. A /\ y e. A ) /\ x =/= y ) /\ -. r .<_ ( x .\/ y ) ) -> -. x .<_ ( r .\/ y ) ) |
| 16 | 4 8 13 14 15 | syl31anc | |- ( ( ( ( K e. HL /\ p e. A /\ r e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) /\ ( p =/= z /\ x =/= y /\ -. r .<_ ( x .\/ y ) ) ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) -> -. x .<_ ( r .\/ y ) ) |
| 17 | simpl31 | |- ( ( ( ( K e. HL /\ p e. A /\ r e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) /\ ( p =/= z /\ x =/= y /\ -. r .<_ ( x .\/ y ) ) ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) -> p =/= z ) |
|
| 18 | simprl | |- ( ( ( ( K e. HL /\ p e. A /\ r e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) /\ ( p =/= z /\ x =/= y /\ -. r .<_ ( x .\/ y ) ) ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) -> p .<_ ( x .\/ r ) ) |
|
| 19 | simpl2 | |- ( ( ( ( K e. HL /\ p e. A /\ r e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) /\ ( p =/= z /\ x =/= y /\ -. r .<_ ( x .\/ y ) ) ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) -> ( x e. A /\ y e. A /\ z e. A ) ) |
|
| 20 | simprr | |- ( ( ( ( K e. HL /\ p e. A /\ r e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) /\ ( p =/= z /\ x =/= y /\ -. r .<_ ( x .\/ y ) ) ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) -> r .<_ ( y .\/ z ) ) |
|
| 21 | 1 2 3 | paddasslem2 | |- ( ( ( K e. HL /\ r e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) /\ ( -. r .<_ ( x .\/ y ) /\ r .<_ ( y .\/ z ) ) ) -> z .<_ ( r .\/ y ) ) |
| 22 | 4 6 19 14 20 21 | syl212anc | |- ( ( ( ( K e. HL /\ p e. A /\ r e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) /\ ( p =/= z /\ x =/= y /\ -. r .<_ ( x .\/ y ) ) ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) -> z .<_ ( r .\/ y ) ) |
| 23 | 18 22 | jca | |- ( ( ( ( K e. HL /\ p e. A /\ r e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) /\ ( p =/= z /\ x =/= y /\ -. r .<_ ( x .\/ y ) ) ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) -> ( p .<_ ( x .\/ r ) /\ z .<_ ( r .\/ y ) ) ) |
| 24 | 16 17 23 | jca31 | |- ( ( ( ( K e. HL /\ p e. A /\ r e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) /\ ( p =/= z /\ x =/= y /\ -. r .<_ ( x .\/ y ) ) ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) -> ( ( -. x .<_ ( r .\/ y ) /\ p =/= z ) /\ ( p .<_ ( x .\/ r ) /\ z .<_ ( r .\/ y ) ) ) ) |
| 25 | 1 2 3 | paddasslem3 | |- ( ( K e. HL /\ ( x e. A /\ r e. A /\ y e. A ) /\ ( p e. A /\ z e. A ) ) -> ( ( ( -. x .<_ ( r .\/ y ) /\ p =/= z ) /\ ( p .<_ ( x .\/ r ) /\ z .<_ ( r .\/ y ) ) ) -> E. s e. A ( s .<_ ( x .\/ y ) /\ s .<_ ( p .\/ z ) ) ) ) |
| 26 | 12 24 25 | sylc | |- ( ( ( ( K e. HL /\ p e. A /\ r e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) /\ ( p =/= z /\ x =/= y /\ -. r .<_ ( x .\/ y ) ) ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) -> E. s e. A ( s .<_ ( x .\/ y ) /\ s .<_ ( p .\/ z ) ) ) |