This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty function value is an element of the image of the function. (Contributed by Thierry Arnoux, 25-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eliman0 | |- ( ( A e. B /\ -. ( F ` A ) = (/) ) -> ( F ` A ) e. ( F " B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvbr0 | |- ( A F ( F ` A ) \/ ( F ` A ) = (/) ) |
|
| 2 | orcom | |- ( ( A F ( F ` A ) \/ ( F ` A ) = (/) ) <-> ( ( F ` A ) = (/) \/ A F ( F ` A ) ) ) |
|
| 3 | 1 2 | mpbi | |- ( ( F ` A ) = (/) \/ A F ( F ` A ) ) |
| 4 | 3 | ori | |- ( -. ( F ` A ) = (/) -> A F ( F ` A ) ) |
| 5 | breq1 | |- ( x = A -> ( x F ( F ` A ) <-> A F ( F ` A ) ) ) |
|
| 6 | 5 | rspcev | |- ( ( A e. B /\ A F ( F ` A ) ) -> E. x e. B x F ( F ` A ) ) |
| 7 | 4 6 | sylan2 | |- ( ( A e. B /\ -. ( F ` A ) = (/) ) -> E. x e. B x F ( F ` A ) ) |
| 8 | fvex | |- ( F ` A ) e. _V |
|
| 9 | 8 | elima | |- ( ( F ` A ) e. ( F " B ) <-> E. x e. B x F ( F ` A ) ) |
| 10 | 7 9 | sylibr | |- ( ( A e. B /\ -. ( F ` A ) = (/) ) -> ( F ` A ) e. ( F " B ) ) |