This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of existence implied by equality of ordered triples. (Contributed by NM, 28-May-2008) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oteqex | |- ( <. <. A , B >. , C >. = <. <. R , S >. , T >. -> ( ( A e. _V /\ B e. _V /\ C e. _V ) <-> ( R e. _V /\ S e. _V /\ T e. _V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | |- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> C e. _V ) |
|
| 2 | 1 | a1i | |- ( <. <. A , B >. , C >. = <. <. R , S >. , T >. -> ( ( A e. _V /\ B e. _V /\ C e. _V ) -> C e. _V ) ) |
| 3 | simp3 | |- ( ( R e. _V /\ S e. _V /\ T e. _V ) -> T e. _V ) |
|
| 4 | oteqex2 | |- ( <. <. A , B >. , C >. = <. <. R , S >. , T >. -> ( C e. _V <-> T e. _V ) ) |
|
| 5 | 3 4 | imbitrrid | |- ( <. <. A , B >. , C >. = <. <. R , S >. , T >. -> ( ( R e. _V /\ S e. _V /\ T e. _V ) -> C e. _V ) ) |
| 6 | opex | |- <. A , B >. e. _V |
|
| 7 | opthg | |- ( ( <. A , B >. e. _V /\ C e. _V ) -> ( <. <. A , B >. , C >. = <. <. R , S >. , T >. <-> ( <. A , B >. = <. R , S >. /\ C = T ) ) ) |
|
| 8 | 6 7 | mpan | |- ( C e. _V -> ( <. <. A , B >. , C >. = <. <. R , S >. , T >. <-> ( <. A , B >. = <. R , S >. /\ C = T ) ) ) |
| 9 | 8 | simprbda | |- ( ( C e. _V /\ <. <. A , B >. , C >. = <. <. R , S >. , T >. ) -> <. A , B >. = <. R , S >. ) |
| 10 | opeqex | |- ( <. A , B >. = <. R , S >. -> ( ( A e. _V /\ B e. _V ) <-> ( R e. _V /\ S e. _V ) ) ) |
|
| 11 | 9 10 | syl | |- ( ( C e. _V /\ <. <. A , B >. , C >. = <. <. R , S >. , T >. ) -> ( ( A e. _V /\ B e. _V ) <-> ( R e. _V /\ S e. _V ) ) ) |
| 12 | 4 | adantl | |- ( ( C e. _V /\ <. <. A , B >. , C >. = <. <. R , S >. , T >. ) -> ( C e. _V <-> T e. _V ) ) |
| 13 | 11 12 | anbi12d | |- ( ( C e. _V /\ <. <. A , B >. , C >. = <. <. R , S >. , T >. ) -> ( ( ( A e. _V /\ B e. _V ) /\ C e. _V ) <-> ( ( R e. _V /\ S e. _V ) /\ T e. _V ) ) ) |
| 14 | df-3an | |- ( ( A e. _V /\ B e. _V /\ C e. _V ) <-> ( ( A e. _V /\ B e. _V ) /\ C e. _V ) ) |
|
| 15 | df-3an | |- ( ( R e. _V /\ S e. _V /\ T e. _V ) <-> ( ( R e. _V /\ S e. _V ) /\ T e. _V ) ) |
|
| 16 | 13 14 15 | 3bitr4g | |- ( ( C e. _V /\ <. <. A , B >. , C >. = <. <. R , S >. , T >. ) -> ( ( A e. _V /\ B e. _V /\ C e. _V ) <-> ( R e. _V /\ S e. _V /\ T e. _V ) ) ) |
| 17 | 16 | expcom | |- ( <. <. A , B >. , C >. = <. <. R , S >. , T >. -> ( C e. _V -> ( ( A e. _V /\ B e. _V /\ C e. _V ) <-> ( R e. _V /\ S e. _V /\ T e. _V ) ) ) ) |
| 18 | 2 5 17 | pm5.21ndd | |- ( <. <. A , B >. , C >. = <. <. R , S >. , T >. -> ( ( A e. _V /\ B e. _V /\ C e. _V ) <-> ( R e. _V /\ S e. _V /\ T e. _V ) ) ) |