This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered ring, the ring unity is positive. (Contributed by Thierry Arnoux, 21-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | orng0le1.1 | |- .0. = ( 0g ` F ) |
|
| orng0le1.2 | |- .1. = ( 1r ` F ) |
||
| orng0le1.3 | |- .<_ = ( le ` F ) |
||
| Assertion | orng0le1 | |- ( F e. oRing -> .0. .<_ .1. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orng0le1.1 | |- .0. = ( 0g ` F ) |
|
| 2 | orng0le1.2 | |- .1. = ( 1r ` F ) |
|
| 3 | orng0le1.3 | |- .<_ = ( le ` F ) |
|
| 4 | orngring | |- ( F e. oRing -> F e. Ring ) |
|
| 5 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 6 | 5 2 | ringidcl | |- ( F e. Ring -> .1. e. ( Base ` F ) ) |
| 7 | 4 6 | syl | |- ( F e. oRing -> .1. e. ( Base ` F ) ) |
| 8 | eqid | |- ( .r ` F ) = ( .r ` F ) |
|
| 9 | 5 3 1 8 | orngsqr | |- ( ( F e. oRing /\ .1. e. ( Base ` F ) ) -> .0. .<_ ( .1. ( .r ` F ) .1. ) ) |
| 10 | 7 9 | mpdan | |- ( F e. oRing -> .0. .<_ ( .1. ( .r ` F ) .1. ) ) |
| 11 | 5 8 2 | ringlidm | |- ( ( F e. Ring /\ .1. e. ( Base ` F ) ) -> ( .1. ( .r ` F ) .1. ) = .1. ) |
| 12 | 4 6 11 | syl2anc2 | |- ( F e. oRing -> ( .1. ( .r ` F ) .1. ) = .1. ) |
| 13 | 10 12 | breqtrd | |- ( F e. oRing -> .0. .<_ .1. ) |