This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opthneg | |- ( ( A e. V /\ B e. W ) -> ( <. A , B >. =/= <. C , D >. <-> ( A =/= C \/ B =/= D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne | |- ( <. A , B >. =/= <. C , D >. <-> -. <. A , B >. = <. C , D >. ) |
|
| 2 | opthg | |- ( ( A e. V /\ B e. W ) -> ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) ) |
|
| 3 | 2 | notbid | |- ( ( A e. V /\ B e. W ) -> ( -. <. A , B >. = <. C , D >. <-> -. ( A = C /\ B = D ) ) ) |
| 4 | ianor | |- ( -. ( A = C /\ B = D ) <-> ( -. A = C \/ -. B = D ) ) |
|
| 5 | df-ne | |- ( A =/= C <-> -. A = C ) |
|
| 6 | df-ne | |- ( B =/= D <-> -. B = D ) |
|
| 7 | 5 6 | orbi12i | |- ( ( A =/= C \/ B =/= D ) <-> ( -. A = C \/ -. B = D ) ) |
| 8 | 4 7 | bitr4i | |- ( -. ( A = C /\ B = D ) <-> ( A =/= C \/ B =/= D ) ) |
| 9 | 3 8 | bitrdi | |- ( ( A e. V /\ B e. W ) -> ( -. <. A , B >. = <. C , D >. <-> ( A =/= C \/ B =/= D ) ) ) |
| 10 | 1 9 | bitrid | |- ( ( A e. V /\ B e. W ) -> ( <. A , B >. =/= <. C , D >. <-> ( A =/= C \/ B =/= D ) ) ) |