This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent wff's yield equal operation class abstractions (deduction form). (Contributed by NM, 21-Feb-2004) (Revised by Mario Carneiro, 24-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oprabbid.1 | |- F/ x ph |
|
| oprabbid.2 | |- F/ y ph |
||
| oprabbid.3 | |- F/ z ph |
||
| oprabbid.4 | |- ( ph -> ( ps <-> ch ) ) |
||
| Assertion | oprabbid | |- ( ph -> { <. <. x , y >. , z >. | ps } = { <. <. x , y >. , z >. | ch } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oprabbid.1 | |- F/ x ph |
|
| 2 | oprabbid.2 | |- F/ y ph |
|
| 3 | oprabbid.3 | |- F/ z ph |
|
| 4 | oprabbid.4 | |- ( ph -> ( ps <-> ch ) ) |
|
| 5 | 4 | anbi2d | |- ( ph -> ( ( w = <. <. x , y >. , z >. /\ ps ) <-> ( w = <. <. x , y >. , z >. /\ ch ) ) ) |
| 6 | 3 5 | exbid | |- ( ph -> ( E. z ( w = <. <. x , y >. , z >. /\ ps ) <-> E. z ( w = <. <. x , y >. , z >. /\ ch ) ) ) |
| 7 | 2 6 | exbid | |- ( ph -> ( E. y E. z ( w = <. <. x , y >. , z >. /\ ps ) <-> E. y E. z ( w = <. <. x , y >. , z >. /\ ch ) ) ) |
| 8 | 1 7 | exbid | |- ( ph -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ps ) <-> E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ch ) ) ) |
| 9 | 8 | abbidv | |- ( ph -> { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ps ) } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ch ) } ) |
| 10 | df-oprab | |- { <. <. x , y >. , z >. | ps } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ps ) } |
|
| 11 | df-oprab | |- { <. <. x , y >. , z >. | ch } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ch ) } |
|
| 12 | 9 10 11 | 3eqtr4g | |- ( ph -> { <. <. x , y >. , z >. | ps } = { <. <. x , y >. , z >. | ch } ) |