This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite category of a terminal category has the same base, hom-sets and composition operation as the original category. Note that C = O cannot be proved because C might not even be a function. For example, let C be ( { <. ( Basendx ) , { (/) } >. , <. ( Homndx ) , ( (V X. V ) X. { { (/) } } ) >. } u. { <. ( compndx ) , { (/) } >. , <. ( compndx ) , 2o >. } ) ; it should be a terminal category, but the opposite category is not itself. See the definitions df-oppc and df-sets . (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcterm.o | |- O = ( oppCat ` C ) |
|
| oppcterm.c | |- ( ph -> C e. TermCat ) |
||
| Assertion | oppctermco | |- ( ph -> ( comf ` C ) = ( comf ` O ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcterm.o | |- O = ( oppCat ` C ) |
|
| 2 | oppcterm.c | |- ( ph -> C e. TermCat ) |
|
| 3 | 2 | termcthind | |- ( ph -> C e. ThinCat ) |
| 4 | 1 2 | oppctermhom | |- ( ph -> ( Homf ` C ) = ( Homf ` O ) ) |
| 5 | 1 3 4 | oppcthinco | |- ( ph -> ( comf ` C ) = ( comf ` O ) ) |