This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of first of an ordered pair in a domain. Deduction version of opeldm . (Contributed by AV, 11-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opeldmd.1 | |- ( ph -> A e. V ) |
|
| opeldmd.2 | |- ( ph -> B e. W ) |
||
| Assertion | opeldmd | |- ( ph -> ( <. A , B >. e. C -> A e. dom C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeldmd.1 | |- ( ph -> A e. V ) |
|
| 2 | opeldmd.2 | |- ( ph -> B e. W ) |
|
| 3 | opeq2 | |- ( y = B -> <. A , y >. = <. A , B >. ) |
|
| 4 | 3 | eleq1d | |- ( y = B -> ( <. A , y >. e. C <-> <. A , B >. e. C ) ) |
| 5 | 4 | spcegv | |- ( B e. W -> ( <. A , B >. e. C -> E. y <. A , y >. e. C ) ) |
| 6 | 2 5 | syl | |- ( ph -> ( <. A , B >. e. C -> E. y <. A , y >. e. C ) ) |
| 7 | eldm2g | |- ( A e. V -> ( A e. dom C <-> E. y <. A , y >. e. C ) ) |
|
| 8 | 1 7 | syl | |- ( ph -> ( A e. dom C <-> E. y <. A , y >. e. C ) ) |
| 9 | 6 8 | sylibrd | |- ( ph -> ( <. A , B >. e. C -> A e. dom C ) ) |