This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a class of ordinal numbers exists iff it is an ordinal number. (Contributed by NM, 6-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onintrab | |- ( |^| { x e. On | ph } e. _V <-> |^| { x e. On | ph } e. On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intex | |- ( { x e. On | ph } =/= (/) <-> |^| { x e. On | ph } e. _V ) |
|
| 2 | ssrab2 | |- { x e. On | ph } C_ On |
|
| 3 | oninton | |- ( ( { x e. On | ph } C_ On /\ { x e. On | ph } =/= (/) ) -> |^| { x e. On | ph } e. On ) |
|
| 4 | 2 3 | mpan | |- ( { x e. On | ph } =/= (/) -> |^| { x e. On | ph } e. On ) |
| 5 | 1 4 | sylbir | |- ( |^| { x e. On | ph } e. _V -> |^| { x e. On | ph } e. On ) |
| 6 | elex | |- ( |^| { x e. On | ph } e. On -> |^| { x e. On | ph } e. _V ) |
|
| 7 | 5 6 | impbii | |- ( |^| { x e. On | ph } e. _V <-> |^| { x e. On | ph } e. On ) |