This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal less than is equivalent to having an ordinal between them. (Contributed by Scott Fenton, 8-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onelssex | |- ( ( A e. On /\ C e. On ) -> ( A e. C <-> E. b e. C A C_ b ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | |- A C_ A |
|
| 2 | sseq2 | |- ( b = A -> ( A C_ b <-> A C_ A ) ) |
|
| 3 | 2 | rspcev | |- ( ( A e. C /\ A C_ A ) -> E. b e. C A C_ b ) |
| 4 | 1 3 | mpan2 | |- ( A e. C -> E. b e. C A C_ b ) |
| 5 | ontr2 | |- ( ( A e. On /\ C e. On ) -> ( ( A C_ b /\ b e. C ) -> A e. C ) ) |
|
| 6 | 5 | expcomd | |- ( ( A e. On /\ C e. On ) -> ( b e. C -> ( A C_ b -> A e. C ) ) ) |
| 7 | 6 | rexlimdv | |- ( ( A e. On /\ C e. On ) -> ( E. b e. C A C_ b -> A e. C ) ) |
| 8 | 4 7 | impbid2 | |- ( ( A e. On /\ C e. On ) -> ( A e. C <-> E. b e. C A C_ b ) ) |