This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right operation by a constant. (Contributed by NM, 7-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ofc2.1 | |- ( ph -> A e. V ) |
|
| ofc2.2 | |- ( ph -> B e. W ) |
||
| ofc2.3 | |- ( ph -> F Fn A ) |
||
| ofc2.4 | |- ( ( ph /\ X e. A ) -> ( F ` X ) = C ) |
||
| Assertion | ofc2 | |- ( ( ph /\ X e. A ) -> ( ( F oF R ( A X. { B } ) ) ` X ) = ( C R B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofc2.1 | |- ( ph -> A e. V ) |
|
| 2 | ofc2.2 | |- ( ph -> B e. W ) |
|
| 3 | ofc2.3 | |- ( ph -> F Fn A ) |
|
| 4 | ofc2.4 | |- ( ( ph /\ X e. A ) -> ( F ` X ) = C ) |
|
| 5 | fnconstg | |- ( B e. W -> ( A X. { B } ) Fn A ) |
|
| 6 | 2 5 | syl | |- ( ph -> ( A X. { B } ) Fn A ) |
| 7 | inidm | |- ( A i^i A ) = A |
|
| 8 | fvconst2g | |- ( ( B e. W /\ X e. A ) -> ( ( A X. { B } ) ` X ) = B ) |
|
| 9 | 2 8 | sylan | |- ( ( ph /\ X e. A ) -> ( ( A X. { B } ) ` X ) = B ) |
| 10 | 3 6 1 1 7 4 9 | ofval | |- ( ( ph /\ X e. A ) -> ( ( F oF R ( A X. { B } ) ) ` X ) = ( C R B ) ) |