This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015) (Proof shortened by AV, 15-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | odrngstr.w | |- W = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } u. { <. ( TopSet ` ndx ) , J >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } ) |
|
| Assertion | odrngstr | |- W Struct <. 1 , ; 1 2 >. |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odrngstr.w | |- W = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } u. { <. ( TopSet ` ndx ) , J >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } ) |
|
| 2 | eqid | |- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } |
|
| 3 | 2 | rngstr | |- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } Struct <. 1 , 3 >. |
| 4 | 9nn | |- 9 e. NN |
|
| 5 | tsetndx | |- ( TopSet ` ndx ) = 9 |
|
| 6 | 9lt10 | |- 9 < ; 1 0 |
|
| 7 | 10nn | |- ; 1 0 e. NN |
|
| 8 | plendx | |- ( le ` ndx ) = ; 1 0 |
|
| 9 | 1nn0 | |- 1 e. NN0 |
|
| 10 | 0nn0 | |- 0 e. NN0 |
|
| 11 | 2nn | |- 2 e. NN |
|
| 12 | 2pos | |- 0 < 2 |
|
| 13 | 9 10 11 12 | declt | |- ; 1 0 < ; 1 2 |
| 14 | 9 11 | decnncl | |- ; 1 2 e. NN |
| 15 | dsndx | |- ( dist ` ndx ) = ; 1 2 |
|
| 16 | 4 5 6 7 8 13 14 15 | strle3 | |- { <. ( TopSet ` ndx ) , J >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } Struct <. 9 , ; 1 2 >. |
| 17 | 3lt9 | |- 3 < 9 |
|
| 18 | 3 16 17 | strleun | |- ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } u. { <. ( TopSet ` ndx ) , J >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } ) Struct <. 1 , ; 1 2 >. |
| 19 | 1 18 | eqbrtri | |- W Struct <. 1 , ; 1 2 >. |