This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add two decimal integers M and N (with carry). (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | numma.1 | |- T e. NN0 |
|
| numma.2 | |- A e. NN0 |
||
| numma.3 | |- B e. NN0 |
||
| numma.4 | |- C e. NN0 |
||
| numma.5 | |- D e. NN0 |
||
| numma.6 | |- M = ( ( T x. A ) + B ) |
||
| numma.7 | |- N = ( ( T x. C ) + D ) |
||
| numaddc.8 | |- F e. NN0 |
||
| numaddc.9 | |- ( ( A + C ) + 1 ) = E |
||
| numaddc.10 | |- ( B + D ) = ( ( T x. 1 ) + F ) |
||
| Assertion | numaddc | |- ( M + N ) = ( ( T x. E ) + F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numma.1 | |- T e. NN0 |
|
| 2 | numma.2 | |- A e. NN0 |
|
| 3 | numma.3 | |- B e. NN0 |
|
| 4 | numma.4 | |- C e. NN0 |
|
| 5 | numma.5 | |- D e. NN0 |
|
| 6 | numma.6 | |- M = ( ( T x. A ) + B ) |
|
| 7 | numma.7 | |- N = ( ( T x. C ) + D ) |
|
| 8 | numaddc.8 | |- F e. NN0 |
|
| 9 | numaddc.9 | |- ( ( A + C ) + 1 ) = E |
|
| 10 | numaddc.10 | |- ( B + D ) = ( ( T x. 1 ) + F ) |
|
| 11 | 1 2 3 | numcl | |- ( ( T x. A ) + B ) e. NN0 |
| 12 | 6 11 | eqeltri | |- M e. NN0 |
| 13 | 12 | nn0cni | |- M e. CC |
| 14 | 13 | mulridi | |- ( M x. 1 ) = M |
| 15 | 14 | oveq1i | |- ( ( M x. 1 ) + N ) = ( M + N ) |
| 16 | 1nn0 | |- 1 e. NN0 |
|
| 17 | 2 | nn0cni | |- A e. CC |
| 18 | 17 | mulridi | |- ( A x. 1 ) = A |
| 19 | 18 | oveq1i | |- ( ( A x. 1 ) + ( C + 1 ) ) = ( A + ( C + 1 ) ) |
| 20 | 4 | nn0cni | |- C e. CC |
| 21 | ax-1cn | |- 1 e. CC |
|
| 22 | 17 20 21 | addassi | |- ( ( A + C ) + 1 ) = ( A + ( C + 1 ) ) |
| 23 | 19 22 9 | 3eqtr2i | |- ( ( A x. 1 ) + ( C + 1 ) ) = E |
| 24 | 3 | nn0cni | |- B e. CC |
| 25 | 24 | mulridi | |- ( B x. 1 ) = B |
| 26 | 25 | oveq1i | |- ( ( B x. 1 ) + D ) = ( B + D ) |
| 27 | 26 10 | eqtri | |- ( ( B x. 1 ) + D ) = ( ( T x. 1 ) + F ) |
| 28 | 1 2 3 4 5 6 7 16 8 16 23 27 | nummac | |- ( ( M x. 1 ) + N ) = ( ( T x. E ) + F ) |
| 29 | 15 28 | eqtr3i | |- ( M + N ) = ( ( T x. E ) + F ) |