This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmmul.x | |- X = ( Base ` R ) |
|
| nmmul.n | |- N = ( norm ` R ) |
||
| nmmul.t | |- .x. = ( .r ` R ) |
||
| nrgdsdi.d | |- D = ( dist ` R ) |
||
| Assertion | nrgdsdi | |- ( ( R e. NrmRing /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( N ` A ) x. ( B D C ) ) = ( ( A .x. B ) D ( A .x. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmmul.x | |- X = ( Base ` R ) |
|
| 2 | nmmul.n | |- N = ( norm ` R ) |
|
| 3 | nmmul.t | |- .x. = ( .r ` R ) |
|
| 4 | nrgdsdi.d | |- D = ( dist ` R ) |
|
| 5 | simpl | |- ( ( R e. NrmRing /\ ( A e. X /\ B e. X /\ C e. X ) ) -> R e. NrmRing ) |
|
| 6 | simpr1 | |- ( ( R e. NrmRing /\ ( A e. X /\ B e. X /\ C e. X ) ) -> A e. X ) |
|
| 7 | nrgring | |- ( R e. NrmRing -> R e. Ring ) |
|
| 8 | 7 | adantr | |- ( ( R e. NrmRing /\ ( A e. X /\ B e. X /\ C e. X ) ) -> R e. Ring ) |
| 9 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 10 | 8 9 | syl | |- ( ( R e. NrmRing /\ ( A e. X /\ B e. X /\ C e. X ) ) -> R e. Grp ) |
| 11 | simpr2 | |- ( ( R e. NrmRing /\ ( A e. X /\ B e. X /\ C e. X ) ) -> B e. X ) |
|
| 12 | simpr3 | |- ( ( R e. NrmRing /\ ( A e. X /\ B e. X /\ C e. X ) ) -> C e. X ) |
|
| 13 | eqid | |- ( -g ` R ) = ( -g ` R ) |
|
| 14 | 1 13 | grpsubcl | |- ( ( R e. Grp /\ B e. X /\ C e. X ) -> ( B ( -g ` R ) C ) e. X ) |
| 15 | 10 11 12 14 | syl3anc | |- ( ( R e. NrmRing /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B ( -g ` R ) C ) e. X ) |
| 16 | 1 2 3 | nmmul | |- ( ( R e. NrmRing /\ A e. X /\ ( B ( -g ` R ) C ) e. X ) -> ( N ` ( A .x. ( B ( -g ` R ) C ) ) ) = ( ( N ` A ) x. ( N ` ( B ( -g ` R ) C ) ) ) ) |
| 17 | 5 6 15 16 | syl3anc | |- ( ( R e. NrmRing /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( N ` ( A .x. ( B ( -g ` R ) C ) ) ) = ( ( N ` A ) x. ( N ` ( B ( -g ` R ) C ) ) ) ) |
| 18 | 1 3 13 8 6 11 12 | ringsubdi | |- ( ( R e. NrmRing /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A .x. ( B ( -g ` R ) C ) ) = ( ( A .x. B ) ( -g ` R ) ( A .x. C ) ) ) |
| 19 | 18 | fveq2d | |- ( ( R e. NrmRing /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( N ` ( A .x. ( B ( -g ` R ) C ) ) ) = ( N ` ( ( A .x. B ) ( -g ` R ) ( A .x. C ) ) ) ) |
| 20 | 17 19 | eqtr3d | |- ( ( R e. NrmRing /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( N ` A ) x. ( N ` ( B ( -g ` R ) C ) ) ) = ( N ` ( ( A .x. B ) ( -g ` R ) ( A .x. C ) ) ) ) |
| 21 | nrgngp | |- ( R e. NrmRing -> R e. NrmGrp ) |
|
| 22 | 21 | adantr | |- ( ( R e. NrmRing /\ ( A e. X /\ B e. X /\ C e. X ) ) -> R e. NrmGrp ) |
| 23 | 2 1 13 4 | ngpds | |- ( ( R e. NrmGrp /\ B e. X /\ C e. X ) -> ( B D C ) = ( N ` ( B ( -g ` R ) C ) ) ) |
| 24 | 22 11 12 23 | syl3anc | |- ( ( R e. NrmRing /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B D C ) = ( N ` ( B ( -g ` R ) C ) ) ) |
| 25 | 24 | oveq2d | |- ( ( R e. NrmRing /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( N ` A ) x. ( B D C ) ) = ( ( N ` A ) x. ( N ` ( B ( -g ` R ) C ) ) ) ) |
| 26 | 1 3 | ringcl | |- ( ( R e. Ring /\ A e. X /\ B e. X ) -> ( A .x. B ) e. X ) |
| 27 | 8 6 11 26 | syl3anc | |- ( ( R e. NrmRing /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A .x. B ) e. X ) |
| 28 | 1 3 | ringcl | |- ( ( R e. Ring /\ A e. X /\ C e. X ) -> ( A .x. C ) e. X ) |
| 29 | 8 6 12 28 | syl3anc | |- ( ( R e. NrmRing /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A .x. C ) e. X ) |
| 30 | 2 1 13 4 | ngpds | |- ( ( R e. NrmGrp /\ ( A .x. B ) e. X /\ ( A .x. C ) e. X ) -> ( ( A .x. B ) D ( A .x. C ) ) = ( N ` ( ( A .x. B ) ( -g ` R ) ( A .x. C ) ) ) ) |
| 31 | 22 27 29 30 | syl3anc | |- ( ( R e. NrmRing /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A .x. B ) D ( A .x. C ) ) = ( N ` ( ( A .x. B ) ( -g ` R ) ( A .x. C ) ) ) ) |
| 32 | 20 25 31 | 3eqtr4d | |- ( ( R e. NrmRing /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( N ` A ) x. ( B D C ) ) = ( ( A .x. B ) D ( A .x. C ) ) ) |