This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of signed reals is a set. Note that a shorter proof is possible using qsex (and not requiring enrer ), but it would add a dependency on ax-rep . (Contributed by Mario Carneiro, 17-Nov-2014) Extract proof from that of axcnex . (Revised by BJ, 4-Feb-2023) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nrex1 | |- R. e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr | |- R. = ( ( P. X. P. ) /. ~R ) |
|
| 2 | npex | |- P. e. _V |
|
| 3 | 2 2 | xpex | |- ( P. X. P. ) e. _V |
| 4 | 3 | pwex | |- ~P ( P. X. P. ) e. _V |
| 5 | enrer | |- ~R Er ( P. X. P. ) |
|
| 6 | 5 | a1i | |- ( T. -> ~R Er ( P. X. P. ) ) |
| 7 | 6 | qsss | |- ( T. -> ( ( P. X. P. ) /. ~R ) C_ ~P ( P. X. P. ) ) |
| 8 | 7 | mptru | |- ( ( P. X. P. ) /. ~R ) C_ ~P ( P. X. P. ) |
| 9 | 4 8 | ssexi | |- ( ( P. X. P. ) /. ~R ) e. _V |
| 10 | 1 9 | eqeltri | |- R. e. _V |