This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Principle of Mathematical Induction (inference schema) on integers, a deduction version. (Contributed by Thierry Arnoux, 19-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nnindd.1 | |- ( x = 1 -> ( ps <-> ch ) ) |
|
| nnindd.2 | |- ( x = y -> ( ps <-> th ) ) |
||
| nnindd.3 | |- ( x = ( y + 1 ) -> ( ps <-> ta ) ) |
||
| nnindd.4 | |- ( x = A -> ( ps <-> et ) ) |
||
| nnindd.5 | |- ( ph -> ch ) |
||
| nnindd.6 | |- ( ( ( ph /\ y e. NN ) /\ th ) -> ta ) |
||
| Assertion | nnindd | |- ( ( ph /\ A e. NN ) -> et ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnindd.1 | |- ( x = 1 -> ( ps <-> ch ) ) |
|
| 2 | nnindd.2 | |- ( x = y -> ( ps <-> th ) ) |
|
| 3 | nnindd.3 | |- ( x = ( y + 1 ) -> ( ps <-> ta ) ) |
|
| 4 | nnindd.4 | |- ( x = A -> ( ps <-> et ) ) |
|
| 5 | nnindd.5 | |- ( ph -> ch ) |
|
| 6 | nnindd.6 | |- ( ( ( ph /\ y e. NN ) /\ th ) -> ta ) |
|
| 7 | 1 | imbi2d | |- ( x = 1 -> ( ( ph -> ps ) <-> ( ph -> ch ) ) ) |
| 8 | 2 | imbi2d | |- ( x = y -> ( ( ph -> ps ) <-> ( ph -> th ) ) ) |
| 9 | 3 | imbi2d | |- ( x = ( y + 1 ) -> ( ( ph -> ps ) <-> ( ph -> ta ) ) ) |
| 10 | 4 | imbi2d | |- ( x = A -> ( ( ph -> ps ) <-> ( ph -> et ) ) ) |
| 11 | 6 | ex | |- ( ( ph /\ y e. NN ) -> ( th -> ta ) ) |
| 12 | 11 | expcom | |- ( y e. NN -> ( ph -> ( th -> ta ) ) ) |
| 13 | 12 | a2d | |- ( y e. NN -> ( ( ph -> th ) -> ( ph -> ta ) ) ) |
| 14 | 7 8 9 10 5 13 | nnind | |- ( A e. NN -> ( ph -> et ) ) |
| 15 | 14 | impcom | |- ( ( ph /\ A e. NN ) -> et ) |