This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of exponentiation of natural numbers. Proposition 8.17 of TakeutiZaring p. 63. Theorem 2.20 of Schloeder p. 6. (Contributed by NM, 24-Mar-2007) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnecl | |- ( ( A e. _om /\ B e. _om ) -> ( A ^o B ) e. _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( x = B -> ( A ^o x ) = ( A ^o B ) ) |
|
| 2 | 1 | eleq1d | |- ( x = B -> ( ( A ^o x ) e. _om <-> ( A ^o B ) e. _om ) ) |
| 3 | 2 | imbi2d | |- ( x = B -> ( ( A e. _om -> ( A ^o x ) e. _om ) <-> ( A e. _om -> ( A ^o B ) e. _om ) ) ) |
| 4 | oveq2 | |- ( x = (/) -> ( A ^o x ) = ( A ^o (/) ) ) |
|
| 5 | 4 | eleq1d | |- ( x = (/) -> ( ( A ^o x ) e. _om <-> ( A ^o (/) ) e. _om ) ) |
| 6 | oveq2 | |- ( x = y -> ( A ^o x ) = ( A ^o y ) ) |
|
| 7 | 6 | eleq1d | |- ( x = y -> ( ( A ^o x ) e. _om <-> ( A ^o y ) e. _om ) ) |
| 8 | oveq2 | |- ( x = suc y -> ( A ^o x ) = ( A ^o suc y ) ) |
|
| 9 | 8 | eleq1d | |- ( x = suc y -> ( ( A ^o x ) e. _om <-> ( A ^o suc y ) e. _om ) ) |
| 10 | nnon | |- ( A e. _om -> A e. On ) |
|
| 11 | oe0 | |- ( A e. On -> ( A ^o (/) ) = 1o ) |
|
| 12 | 10 11 | syl | |- ( A e. _om -> ( A ^o (/) ) = 1o ) |
| 13 | df-1o | |- 1o = suc (/) |
|
| 14 | peano1 | |- (/) e. _om |
|
| 15 | peano2 | |- ( (/) e. _om -> suc (/) e. _om ) |
|
| 16 | 14 15 | ax-mp | |- suc (/) e. _om |
| 17 | 13 16 | eqeltri | |- 1o e. _om |
| 18 | 12 17 | eqeltrdi | |- ( A e. _om -> ( A ^o (/) ) e. _om ) |
| 19 | nnmcl | |- ( ( ( A ^o y ) e. _om /\ A e. _om ) -> ( ( A ^o y ) .o A ) e. _om ) |
|
| 20 | 19 | expcom | |- ( A e. _om -> ( ( A ^o y ) e. _om -> ( ( A ^o y ) .o A ) e. _om ) ) |
| 21 | 20 | adantr | |- ( ( A e. _om /\ y e. _om ) -> ( ( A ^o y ) e. _om -> ( ( A ^o y ) .o A ) e. _om ) ) |
| 22 | nnesuc | |- ( ( A e. _om /\ y e. _om ) -> ( A ^o suc y ) = ( ( A ^o y ) .o A ) ) |
|
| 23 | 22 | eleq1d | |- ( ( A e. _om /\ y e. _om ) -> ( ( A ^o suc y ) e. _om <-> ( ( A ^o y ) .o A ) e. _om ) ) |
| 24 | 21 23 | sylibrd | |- ( ( A e. _om /\ y e. _om ) -> ( ( A ^o y ) e. _om -> ( A ^o suc y ) e. _om ) ) |
| 25 | 24 | expcom | |- ( y e. _om -> ( A e. _om -> ( ( A ^o y ) e. _om -> ( A ^o suc y ) e. _om ) ) ) |
| 26 | 5 7 9 18 25 | finds2 | |- ( x e. _om -> ( A e. _om -> ( A ^o x ) e. _om ) ) |
| 27 | 3 26 | vtoclga | |- ( B e. _om -> ( A e. _om -> ( A ^o B ) e. _om ) ) |
| 28 | 27 | impcom | |- ( ( A e. _om /\ B e. _om ) -> ( A ^o B ) e. _om ) |