This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the norm on a group as the distance restricted to the elements of the base set to zero. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmfval2.n | |- N = ( norm ` W ) |
|
| nmfval2.x | |- X = ( Base ` W ) |
||
| nmfval2.z | |- .0. = ( 0g ` W ) |
||
| nmfval2.d | |- D = ( dist ` W ) |
||
| nmfval2.e | |- E = ( D |` ( X X. X ) ) |
||
| Assertion | nmval2 | |- ( ( W e. Grp /\ A e. X ) -> ( N ` A ) = ( A E .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmfval2.n | |- N = ( norm ` W ) |
|
| 2 | nmfval2.x | |- X = ( Base ` W ) |
|
| 3 | nmfval2.z | |- .0. = ( 0g ` W ) |
|
| 4 | nmfval2.d | |- D = ( dist ` W ) |
|
| 5 | nmfval2.e | |- E = ( D |` ( X X. X ) ) |
|
| 6 | 1 2 3 4 | nmval | |- ( A e. X -> ( N ` A ) = ( A D .0. ) ) |
| 7 | 6 | adantl | |- ( ( W e. Grp /\ A e. X ) -> ( N ` A ) = ( A D .0. ) ) |
| 8 | 5 | oveqi | |- ( A E .0. ) = ( A ( D |` ( X X. X ) ) .0. ) |
| 9 | id | |- ( A e. X -> A e. X ) |
|
| 10 | 2 3 | grpidcl | |- ( W e. Grp -> .0. e. X ) |
| 11 | ovres | |- ( ( A e. X /\ .0. e. X ) -> ( A ( D |` ( X X. X ) ) .0. ) = ( A D .0. ) ) |
|
| 12 | 9 10 11 | syl2anr | |- ( ( W e. Grp /\ A e. X ) -> ( A ( D |` ( X X. X ) ) .0. ) = ( A D .0. ) ) |
| 13 | 8 12 | eqtr2id | |- ( ( W e. Grp /\ A e. X ) -> ( A D .0. ) = ( A E .0. ) ) |
| 14 | 7 13 | eqtrd | |- ( ( W e. Grp /\ A e. X ) -> ( N ` A ) = ( A E .0. ) ) |