This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set in the supremum of the functional norm definition df-nmfn is nonempty. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmfnsetn0 | |- ( abs ` ( T ` 0h ) ) e. { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( T ` y ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl | |- 0h e. ~H |
|
| 2 | norm0 | |- ( normh ` 0h ) = 0 |
|
| 3 | 0le1 | |- 0 <_ 1 |
|
| 4 | 2 3 | eqbrtri | |- ( normh ` 0h ) <_ 1 |
| 5 | eqid | |- ( abs ` ( T ` 0h ) ) = ( abs ` ( T ` 0h ) ) |
|
| 6 | 4 5 | pm3.2i | |- ( ( normh ` 0h ) <_ 1 /\ ( abs ` ( T ` 0h ) ) = ( abs ` ( T ` 0h ) ) ) |
| 7 | fveq2 | |- ( y = 0h -> ( normh ` y ) = ( normh ` 0h ) ) |
|
| 8 | 7 | breq1d | |- ( y = 0h -> ( ( normh ` y ) <_ 1 <-> ( normh ` 0h ) <_ 1 ) ) |
| 9 | 2fveq3 | |- ( y = 0h -> ( abs ` ( T ` y ) ) = ( abs ` ( T ` 0h ) ) ) |
|
| 10 | 9 | eqeq2d | |- ( y = 0h -> ( ( abs ` ( T ` 0h ) ) = ( abs ` ( T ` y ) ) <-> ( abs ` ( T ` 0h ) ) = ( abs ` ( T ` 0h ) ) ) ) |
| 11 | 8 10 | anbi12d | |- ( y = 0h -> ( ( ( normh ` y ) <_ 1 /\ ( abs ` ( T ` 0h ) ) = ( abs ` ( T ` y ) ) ) <-> ( ( normh ` 0h ) <_ 1 /\ ( abs ` ( T ` 0h ) ) = ( abs ` ( T ` 0h ) ) ) ) ) |
| 12 | 11 | rspcev | |- ( ( 0h e. ~H /\ ( ( normh ` 0h ) <_ 1 /\ ( abs ` ( T ` 0h ) ) = ( abs ` ( T ` 0h ) ) ) ) -> E. y e. ~H ( ( normh ` y ) <_ 1 /\ ( abs ` ( T ` 0h ) ) = ( abs ` ( T ` y ) ) ) ) |
| 13 | 1 6 12 | mp2an | |- E. y e. ~H ( ( normh ` y ) <_ 1 /\ ( abs ` ( T ` 0h ) ) = ( abs ` ( T ` y ) ) ) |
| 14 | fvex | |- ( abs ` ( T ` 0h ) ) e. _V |
|
| 15 | eqeq1 | |- ( x = ( abs ` ( T ` 0h ) ) -> ( x = ( abs ` ( T ` y ) ) <-> ( abs ` ( T ` 0h ) ) = ( abs ` ( T ` y ) ) ) ) |
|
| 16 | 15 | anbi2d | |- ( x = ( abs ` ( T ` 0h ) ) -> ( ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( T ` y ) ) ) <-> ( ( normh ` y ) <_ 1 /\ ( abs ` ( T ` 0h ) ) = ( abs ` ( T ` y ) ) ) ) ) |
| 17 | 16 | rexbidv | |- ( x = ( abs ` ( T ` 0h ) ) -> ( E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( T ` y ) ) ) <-> E. y e. ~H ( ( normh ` y ) <_ 1 /\ ( abs ` ( T ` 0h ) ) = ( abs ` ( T ` y ) ) ) ) ) |
| 18 | 14 17 | elab | |- ( ( abs ` ( T ` 0h ) ) e. { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( T ` y ) ) ) } <-> E. y e. ~H ( ( normh ` y ) <_ 1 /\ ( abs ` ( T ` 0h ) ) = ( abs ` ( T ` y ) ) ) ) |
| 19 | 13 18 | mpbir | |- ( abs ` ( T ` 0h ) ) e. { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( T ` y ) ) ) } |