This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Non-membership in the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nelrnmpt.x | |- F/ x ph |
|
| nelrnmpt.f | |- F = ( x e. A |-> B ) |
||
| nelrnmpt.c | |- ( ph -> C e. V ) |
||
| nelrnmpt.n | |- ( ( ph /\ x e. A ) -> C =/= B ) |
||
| Assertion | nelrnmpt | |- ( ph -> -. C e. ran F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelrnmpt.x | |- F/ x ph |
|
| 2 | nelrnmpt.f | |- F = ( x e. A |-> B ) |
|
| 3 | nelrnmpt.c | |- ( ph -> C e. V ) |
|
| 4 | nelrnmpt.n | |- ( ( ph /\ x e. A ) -> C =/= B ) |
|
| 5 | 4 | neneqd | |- ( ( ph /\ x e. A ) -> -. C = B ) |
| 6 | 5 | ex | |- ( ph -> ( x e. A -> -. C = B ) ) |
| 7 | 1 6 | ralrimi | |- ( ph -> A. x e. A -. C = B ) |
| 8 | ralnex | |- ( A. x e. A -. C = B <-> -. E. x e. A C = B ) |
|
| 9 | 7 8 | sylib | |- ( ph -> -. E. x e. A C = B ) |
| 10 | 2 | elrnmpt | |- ( C e. V -> ( C e. ran F <-> E. x e. A C = B ) ) |
| 11 | 3 10 | syl | |- ( ph -> ( C e. ran F <-> E. x e. A C = B ) ) |
| 12 | 9 11 | mtbird | |- ( ph -> -. C e. ran F ) |