This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a class X has at least one neighbor, this class must be a vertex. (Contributed by AV, 6-Jun-2021) (Revised by AV, 12-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nbgrcl.v | |- V = ( Vtx ` G ) |
|
| Assertion | nbgrcl | |- ( N e. ( G NeighbVtx X ) -> X e. V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbgrcl.v | |- V = ( Vtx ` G ) |
|
| 2 | df-nbgr | |- NeighbVtx = ( g e. _V , v e. ( Vtx ` g ) |-> { n e. ( ( Vtx ` g ) \ { v } ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) |
|
| 3 | 2 | mpoxeldm | |- ( N e. ( G NeighbVtx X ) -> ( G e. _V /\ X e. [_ G / g ]_ ( Vtx ` g ) ) ) |
| 4 | csbfv | |- [_ G / g ]_ ( Vtx ` g ) = ( Vtx ` G ) |
|
| 5 | 4 1 | eqtr4i | |- [_ G / g ]_ ( Vtx ` g ) = V |
| 6 | 5 | eleq2i | |- ( X e. [_ G / g ]_ ( Vtx ` g ) <-> X e. V ) |
| 7 | 6 | biimpi | |- ( X e. [_ G / g ]_ ( Vtx ` g ) -> X e. V ) |
| 8 | 3 7 | simpl2im | |- ( N e. ( G NeighbVtx X ) -> X e. V ) |