This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Moore closure generalizes closure in a topology. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mrccls.f | |- F = ( mrCls ` ( Clsd ` J ) ) |
|
| Assertion | mrccls | |- ( J e. Top -> ( cls ` J ) = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrccls.f | |- F = ( mrCls ` ( Clsd ` J ) ) |
|
| 2 | eqid | |- U. J = U. J |
|
| 3 | 2 | clsfval | |- ( J e. Top -> ( cls ` J ) = ( a e. ~P U. J |-> |^| { b e. ( Clsd ` J ) | a C_ b } ) ) |
| 4 | 2 | cldmre | |- ( J e. Top -> ( Clsd ` J ) e. ( Moore ` U. J ) ) |
| 5 | 1 | mrcfval | |- ( ( Clsd ` J ) e. ( Moore ` U. J ) -> F = ( a e. ~P U. J |-> |^| { b e. ( Clsd ` J ) | a C_ b } ) ) |
| 6 | 4 5 | syl | |- ( J e. Top -> F = ( a e. ~P U. J |-> |^| { b e. ( Clsd ` J ) | a C_ b } ) ) |
| 7 | 3 6 | eqtr4d | |- ( J e. Top -> ( cls ` J ) = F ) |