This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of mod2xi with a negative mod value. (Contributed by Mario Carneiro, 21-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mod2xnegi.1 | |- A e. NN |
|
| mod2xnegi.2 | |- B e. NN0 |
||
| mod2xnegi.3 | |- D e. ZZ |
||
| mod2xnegi.4 | |- K e. NN |
||
| mod2xnegi.5 | |- M e. NN0 |
||
| mod2xnegi.6 | |- L e. NN0 |
||
| mod2xnegi.10 | |- ( ( A ^ B ) mod N ) = ( L mod N ) |
||
| mod2xnegi.7 | |- ( 2 x. B ) = E |
||
| mod2xnegi.8 | |- ( L + K ) = N |
||
| mod2xnegi.9 | |- ( ( D x. N ) + M ) = ( K x. K ) |
||
| Assertion | mod2xnegi | |- ( ( A ^ E ) mod N ) = ( M mod N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mod2xnegi.1 | |- A e. NN |
|
| 2 | mod2xnegi.2 | |- B e. NN0 |
|
| 3 | mod2xnegi.3 | |- D e. ZZ |
|
| 4 | mod2xnegi.4 | |- K e. NN |
|
| 5 | mod2xnegi.5 | |- M e. NN0 |
|
| 6 | mod2xnegi.6 | |- L e. NN0 |
|
| 7 | mod2xnegi.10 | |- ( ( A ^ B ) mod N ) = ( L mod N ) |
|
| 8 | mod2xnegi.7 | |- ( 2 x. B ) = E |
|
| 9 | mod2xnegi.8 | |- ( L + K ) = N |
|
| 10 | mod2xnegi.9 | |- ( ( D x. N ) + M ) = ( K x. K ) |
|
| 11 | nn0nnaddcl | |- ( ( L e. NN0 /\ K e. NN ) -> ( L + K ) e. NN ) |
|
| 12 | 6 4 11 | mp2an | |- ( L + K ) e. NN |
| 13 | 9 12 | eqeltrri | |- N e. NN |
| 14 | 13 | nnzi | |- N e. ZZ |
| 15 | zaddcl | |- ( ( N e. ZZ /\ D e. ZZ ) -> ( N + D ) e. ZZ ) |
|
| 16 | 14 3 15 | mp2an | |- ( N + D ) e. ZZ |
| 17 | 4 | nnnn0i | |- K e. NN0 |
| 18 | 17 17 | nn0addcli | |- ( K + K ) e. NN0 |
| 19 | 18 | nn0zi | |- ( K + K ) e. ZZ |
| 20 | zsubcl | |- ( ( ( N + D ) e. ZZ /\ ( K + K ) e. ZZ ) -> ( ( N + D ) - ( K + K ) ) e. ZZ ) |
|
| 21 | 16 19 20 | mp2an | |- ( ( N + D ) - ( K + K ) ) e. ZZ |
| 22 | 13 | nncni | |- N e. CC |
| 23 | zcn | |- ( D e. ZZ -> D e. CC ) |
|
| 24 | 3 23 | ax-mp | |- D e. CC |
| 25 | 22 24 | addcli | |- ( N + D ) e. CC |
| 26 | 4 | nncni | |- K e. CC |
| 27 | 26 26 | addcli | |- ( K + K ) e. CC |
| 28 | 25 27 22 | subdiri | |- ( ( ( N + D ) - ( K + K ) ) x. N ) = ( ( ( N + D ) x. N ) - ( ( K + K ) x. N ) ) |
| 29 | 28 | oveq1i | |- ( ( ( ( N + D ) - ( K + K ) ) x. N ) + M ) = ( ( ( ( N + D ) x. N ) - ( ( K + K ) x. N ) ) + M ) |
| 30 | 25 22 | mulcli | |- ( ( N + D ) x. N ) e. CC |
| 31 | 5 | nn0cni | |- M e. CC |
| 32 | 27 22 | mulcli | |- ( ( K + K ) x. N ) e. CC |
| 33 | 30 31 32 | addsubi | |- ( ( ( ( N + D ) x. N ) + M ) - ( ( K + K ) x. N ) ) = ( ( ( ( N + D ) x. N ) - ( ( K + K ) x. N ) ) + M ) |
| 34 | 10 | oveq2i | |- ( ( N x. N ) + ( ( D x. N ) + M ) ) = ( ( N x. N ) + ( K x. K ) ) |
| 35 | 22 26 26 | adddii | |- ( N x. ( K + K ) ) = ( ( N x. K ) + ( N x. K ) ) |
| 36 | 34 35 | oveq12i | |- ( ( ( N x. N ) + ( ( D x. N ) + M ) ) - ( N x. ( K + K ) ) ) = ( ( ( N x. N ) + ( K x. K ) ) - ( ( N x. K ) + ( N x. K ) ) ) |
| 37 | 22 24 22 | adddiri | |- ( ( N + D ) x. N ) = ( ( N x. N ) + ( D x. N ) ) |
| 38 | 37 | oveq1i | |- ( ( ( N + D ) x. N ) + M ) = ( ( ( N x. N ) + ( D x. N ) ) + M ) |
| 39 | 22 22 | mulcli | |- ( N x. N ) e. CC |
| 40 | 24 22 | mulcli | |- ( D x. N ) e. CC |
| 41 | 39 40 31 | addassi | |- ( ( ( N x. N ) + ( D x. N ) ) + M ) = ( ( N x. N ) + ( ( D x. N ) + M ) ) |
| 42 | 38 41 | eqtr2i | |- ( ( N x. N ) + ( ( D x. N ) + M ) ) = ( ( ( N + D ) x. N ) + M ) |
| 43 | 22 27 | mulcomi | |- ( N x. ( K + K ) ) = ( ( K + K ) x. N ) |
| 44 | 42 43 | oveq12i | |- ( ( ( N x. N ) + ( ( D x. N ) + M ) ) - ( N x. ( K + K ) ) ) = ( ( ( ( N + D ) x. N ) + M ) - ( ( K + K ) x. N ) ) |
| 45 | 36 44 | eqtr3i | |- ( ( ( N x. N ) + ( K x. K ) ) - ( ( N x. K ) + ( N x. K ) ) ) = ( ( ( ( N + D ) x. N ) + M ) - ( ( K + K ) x. N ) ) |
| 46 | mulsub | |- ( ( ( N e. CC /\ K e. CC ) /\ ( N e. CC /\ K e. CC ) ) -> ( ( N - K ) x. ( N - K ) ) = ( ( ( N x. N ) + ( K x. K ) ) - ( ( N x. K ) + ( N x. K ) ) ) ) |
|
| 47 | 22 26 22 26 46 | mp4an | |- ( ( N - K ) x. ( N - K ) ) = ( ( ( N x. N ) + ( K x. K ) ) - ( ( N x. K ) + ( N x. K ) ) ) |
| 48 | 6 | nn0cni | |- L e. CC |
| 49 | 22 26 48 | subadd2i | |- ( ( N - K ) = L <-> ( L + K ) = N ) |
| 50 | 9 49 | mpbir | |- ( N - K ) = L |
| 51 | 50 50 | oveq12i | |- ( ( N - K ) x. ( N - K ) ) = ( L x. L ) |
| 52 | 47 51 | eqtr3i | |- ( ( ( N x. N ) + ( K x. K ) ) - ( ( N x. K ) + ( N x. K ) ) ) = ( L x. L ) |
| 53 | 45 52 | eqtr3i | |- ( ( ( ( N + D ) x. N ) + M ) - ( ( K + K ) x. N ) ) = ( L x. L ) |
| 54 | 29 33 53 | 3eqtr2i | |- ( ( ( ( N + D ) - ( K + K ) ) x. N ) + M ) = ( L x. L ) |
| 55 | 13 1 2 21 6 5 7 8 54 | mod2xi | |- ( ( A ^ E ) mod N ) = ( M mod N ) |