This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Tuple-wise left identity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndvcl.b | |- B = ( Base ` M ) |
|
| mndvcl.p | |- .+ = ( +g ` M ) |
||
| mndvlid.z | |- .0. = ( 0g ` M ) |
||
| Assertion | mndvlid | |- ( ( M e. Mnd /\ X e. ( B ^m I ) ) -> ( ( I X. { .0. } ) oF .+ X ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndvcl.b | |- B = ( Base ` M ) |
|
| 2 | mndvcl.p | |- .+ = ( +g ` M ) |
|
| 3 | mndvlid.z | |- .0. = ( 0g ` M ) |
|
| 4 | elmapex | |- ( X e. ( B ^m I ) -> ( B e. _V /\ I e. _V ) ) |
|
| 5 | 4 | simprd | |- ( X e. ( B ^m I ) -> I e. _V ) |
| 6 | 5 | adantl | |- ( ( M e. Mnd /\ X e. ( B ^m I ) ) -> I e. _V ) |
| 7 | elmapi | |- ( X e. ( B ^m I ) -> X : I --> B ) |
|
| 8 | 7 | adantl | |- ( ( M e. Mnd /\ X e. ( B ^m I ) ) -> X : I --> B ) |
| 9 | 1 3 | mndidcl | |- ( M e. Mnd -> .0. e. B ) |
| 10 | 9 | adantr | |- ( ( M e. Mnd /\ X e. ( B ^m I ) ) -> .0. e. B ) |
| 11 | 1 2 3 | mndlid | |- ( ( M e. Mnd /\ x e. B ) -> ( .0. .+ x ) = x ) |
| 12 | 11 | adantlr | |- ( ( ( M e. Mnd /\ X e. ( B ^m I ) ) /\ x e. B ) -> ( .0. .+ x ) = x ) |
| 13 | 6 8 10 12 | caofid0l | |- ( ( M e. Mnd /\ X e. ( B ^m I ) ) -> ( ( I X. { .0. } ) oF .+ X ) = X ) |