This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Step 28 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | merlem12 | |- ( ( ( th -> ( -. -. ch -> ch ) ) -> ph ) -> ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | merlem5 | |- ( ( ch -> ch ) -> ( -. -. ch -> ch ) ) |
|
| 2 | merlem2 | |- ( ( ( ch -> ch ) -> ( -. -. ch -> ch ) ) -> ( th -> ( -. -. ch -> ch ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( th -> ( -. -. ch -> ch ) ) |
| 4 | merlem4 | |- ( ( th -> ( -. -. ch -> ch ) ) -> ( ( ( th -> ( -. -. ch -> ch ) ) -> ph ) -> ( ( ( th -> ( -. -. ch -> ch ) ) -> ph ) -> ph ) ) ) |
|
| 5 | 3 4 | ax-mp | |- ( ( ( th -> ( -. -. ch -> ch ) ) -> ph ) -> ( ( ( th -> ( -. -. ch -> ch ) ) -> ph ) -> ph ) ) |
| 6 | merlem11 | |- ( ( ( ( th -> ( -. -. ch -> ch ) ) -> ph ) -> ( ( ( th -> ( -. -. ch -> ch ) ) -> ph ) -> ph ) ) -> ( ( ( th -> ( -. -. ch -> ch ) ) -> ph ) -> ph ) ) |
|
| 7 | 5 6 | ax-mp | |- ( ( ( th -> ( -. -. ch -> ch ) ) -> ph ) -> ph ) |