This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 . (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mercolem4 | |- ( ( th -> ( et -> ph ) ) -> ( ( ( th -> ch ) -> ph ) -> ( ta -> ( et -> ph ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | merco2 | |- ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) |
|
| 2 | merco2 | |- ( ( ( ( et -> ph ) -> ph ) -> ( ( F. -> ph ) -> th ) ) -> ( ( th -> ( et -> ph ) ) -> ( ( ( th -> ch ) -> ph ) -> ( ta -> ( et -> ph ) ) ) ) ) |
|
| 3 | merco2 | |- ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ( th -> ch ) ) ) -> ( ( ( th -> ch ) -> ph ) -> ( ta -> ( et -> ph ) ) ) ) |
|
| 4 | mercolem1 | |- ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ( th -> ch ) ) ) -> ( ( ( th -> ch ) -> ph ) -> ( ta -> ( et -> ph ) ) ) ) -> ( ( ( F. -> ph ) -> ( th -> ch ) ) -> ( ( th -> ( et -> ph ) ) -> ( ( ( th -> ch ) -> ph ) -> ( ta -> ( et -> ph ) ) ) ) ) ) |
|
| 5 | 3 4 | ax-mp | |- ( ( ( F. -> ph ) -> ( th -> ch ) ) -> ( ( th -> ( et -> ph ) ) -> ( ( ( th -> ch ) -> ph ) -> ( ta -> ( et -> ph ) ) ) ) ) |
| 6 | mercolem1 | |- ( ( ( ( F. -> ph ) -> ( th -> ch ) ) -> ( ( th -> ( et -> ph ) ) -> ( ( ( th -> ch ) -> ph ) -> ( ta -> ( et -> ph ) ) ) ) ) -> ( ( th -> ch ) -> ( ( F. -> ph ) -> ( ( th -> ( et -> ph ) ) -> ( ( ( th -> ch ) -> ph ) -> ( ta -> ( et -> ph ) ) ) ) ) ) ) |
|
| 7 | 5 6 | ax-mp | |- ( ( th -> ch ) -> ( ( F. -> ph ) -> ( ( th -> ( et -> ph ) ) -> ( ( ( th -> ch ) -> ph ) -> ( ta -> ( et -> ph ) ) ) ) ) ) |
| 8 | merco2 | |- ( ( ( th -> ch ) -> ( ( F. -> ph ) -> ( ( th -> ( et -> ph ) ) -> ( ( ( th -> ch ) -> ph ) -> ( ta -> ( et -> ph ) ) ) ) ) ) -> ( ( ( ( th -> ( et -> ph ) ) -> ( ( ( th -> ch ) -> ph ) -> ( ta -> ( et -> ph ) ) ) ) -> th ) -> ( ( ( et -> ph ) -> ph ) -> ( ( F. -> ph ) -> th ) ) ) ) |
|
| 9 | 7 8 | ax-mp | |- ( ( ( ( th -> ( et -> ph ) ) -> ( ( ( th -> ch ) -> ph ) -> ( ta -> ( et -> ph ) ) ) ) -> th ) -> ( ( ( et -> ph ) -> ph ) -> ( ( F. -> ph ) -> th ) ) ) |
| 10 | mercolem3 | |- ( ( ( ( ( th -> ( et -> ph ) ) -> ( ( ( th -> ch ) -> ph ) -> ( ta -> ( et -> ph ) ) ) ) -> th ) -> ( ( ( et -> ph ) -> ph ) -> ( ( F. -> ph ) -> th ) ) ) -> ( ( ( ( th -> ( et -> ph ) ) -> ( ( ( th -> ch ) -> ph ) -> ( ta -> ( et -> ph ) ) ) ) -> th ) -> ( ( F. -> ph ) -> ( ( ( et -> ph ) -> ph ) -> ( ( F. -> ph ) -> th ) ) ) ) ) |
|
| 11 | 9 10 | ax-mp | |- ( ( ( ( th -> ( et -> ph ) ) -> ( ( ( th -> ch ) -> ph ) -> ( ta -> ( et -> ph ) ) ) ) -> th ) -> ( ( F. -> ph ) -> ( ( ( et -> ph ) -> ph ) -> ( ( F. -> ph ) -> th ) ) ) ) |
| 12 | merco2 | |- ( ( ( ( ( th -> ( et -> ph ) ) -> ( ( ( th -> ch ) -> ph ) -> ( ta -> ( et -> ph ) ) ) ) -> th ) -> ( ( F. -> ph ) -> ( ( ( et -> ph ) -> ph ) -> ( ( F. -> ph ) -> th ) ) ) ) -> ( ( ( ( ( et -> ph ) -> ph ) -> ( ( F. -> ph ) -> th ) ) -> ( ( th -> ( et -> ph ) ) -> ( ( ( th -> ch ) -> ph ) -> ( ta -> ( et -> ph ) ) ) ) ) -> ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( th -> ( et -> ph ) ) -> ( ( ( th -> ch ) -> ph ) -> ( ta -> ( et -> ph ) ) ) ) ) ) ) ) |
|
| 13 | 11 12 | ax-mp | |- ( ( ( ( ( et -> ph ) -> ph ) -> ( ( F. -> ph ) -> th ) ) -> ( ( th -> ( et -> ph ) ) -> ( ( ( th -> ch ) -> ph ) -> ( ta -> ( et -> ph ) ) ) ) ) -> ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( th -> ( et -> ph ) ) -> ( ( ( th -> ch ) -> ph ) -> ( ta -> ( et -> ph ) ) ) ) ) ) ) |
| 14 | 2 13 | ax-mp | |- ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( th -> ( et -> ph ) ) -> ( ( ( th -> ch ) -> ph ) -> ( ta -> ( et -> ph ) ) ) ) ) ) |
| 15 | 1 14 | ax-mp | |- ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( th -> ( et -> ph ) ) -> ( ( ( th -> ch ) -> ph ) -> ( ta -> ( et -> ph ) ) ) ) ) |
| 16 | 1 15 | ax-mp | |- ( ( th -> ( et -> ph ) ) -> ( ( ( th -> ch ) -> ph ) -> ( ta -> ( et -> ph ) ) ) ) |