This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 . (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mercolem5 | |- ( th -> ( ( th -> ph ) -> ( ta -> ( ch -> ph ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | merco2 | |- ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) |
|
| 2 | merco2 | |- ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> th ) ) -> ( ( th -> ph ) -> ( ta -> ( ch -> ph ) ) ) ) |
|
| 3 | mercolem1 | |- ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> th ) ) -> ( ( th -> ph ) -> ( ta -> ( ch -> ph ) ) ) ) -> ( ( ( F. -> ph ) -> th ) -> ( th -> ( ( th -> ph ) -> ( ta -> ( ch -> ph ) ) ) ) ) ) |
|
| 4 | 2 3 | ax-mp | |- ( ( ( F. -> ph ) -> th ) -> ( th -> ( ( th -> ph ) -> ( ta -> ( ch -> ph ) ) ) ) ) |
| 5 | mercolem2 | |- ( ( ( th -> ( ( th -> ph ) -> ( ta -> ( ch -> ph ) ) ) ) -> th ) -> ( ( F. -> ph ) -> ( ( F. -> ph ) -> th ) ) ) |
|
| 6 | merco2 | |- ( ( ( ( th -> ( ( th -> ph ) -> ( ta -> ( ch -> ph ) ) ) ) -> th ) -> ( ( F. -> ph ) -> ( ( F. -> ph ) -> th ) ) ) -> ( ( ( ( F. -> ph ) -> th ) -> ( th -> ( ( th -> ph ) -> ( ta -> ( ch -> ph ) ) ) ) ) -> ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( th -> ( ( th -> ph ) -> ( ta -> ( ch -> ph ) ) ) ) ) ) ) ) |
|
| 7 | 5 6 | ax-mp | |- ( ( ( ( F. -> ph ) -> th ) -> ( th -> ( ( th -> ph ) -> ( ta -> ( ch -> ph ) ) ) ) ) -> ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( th -> ( ( th -> ph ) -> ( ta -> ( ch -> ph ) ) ) ) ) ) ) |
| 8 | 4 7 | ax-mp | |- ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( th -> ( ( th -> ph ) -> ( ta -> ( ch -> ph ) ) ) ) ) ) |
| 9 | 1 8 | ax-mp | |- ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( th -> ( ( th -> ph ) -> ( ta -> ( ch -> ph ) ) ) ) ) |
| 10 | 1 9 | ax-mp | |- ( th -> ( ( th -> ph ) -> ( ta -> ( ch -> ph ) ) ) ) |