This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of mapex as of 17-Jun-2025. (Contributed by Raph Levien, 4-Dec-2003) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapexOLD | |- ( ( A e. C /\ B e. D ) -> { f | f : A --> B } e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssxp | |- ( f : A --> B -> f C_ ( A X. B ) ) |
|
| 2 | 1 | ss2abi | |- { f | f : A --> B } C_ { f | f C_ ( A X. B ) } |
| 3 | df-pw | |- ~P ( A X. B ) = { f | f C_ ( A X. B ) } |
|
| 4 | 2 3 | sseqtrri | |- { f | f : A --> B } C_ ~P ( A X. B ) |
| 5 | xpexg | |- ( ( A e. C /\ B e. D ) -> ( A X. B ) e. _V ) |
|
| 6 | 5 | pwexd | |- ( ( A e. C /\ B e. D ) -> ~P ( A X. B ) e. _V ) |
| 7 | ssexg | |- ( ( { f | f : A --> B } C_ ~P ( A X. B ) /\ ~P ( A X. B ) e. _V ) -> { f | f : A --> B } e. _V ) |
|
| 8 | 4 6 7 | sylancr | |- ( ( A e. C /\ B e. D ) -> { f | f : A --> B } e. _V ) |