This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | luklem2 | |- ( ( ph -> -. ps ) -> ( ( ( ph -> ch ) -> th ) -> ( ps -> th ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | luk-1 | |- ( ( ph -> -. ps ) -> ( ( -. ps -> ch ) -> ( ph -> ch ) ) ) |
|
| 2 | luk-3 | |- ( ps -> ( -. ps -> ch ) ) |
|
| 3 | luk-1 | |- ( ( ps -> ( -. ps -> ch ) ) -> ( ( ( -. ps -> ch ) -> ( ph -> ch ) ) -> ( ps -> ( ph -> ch ) ) ) ) |
|
| 4 | 2 3 | ax-mp | |- ( ( ( -. ps -> ch ) -> ( ph -> ch ) ) -> ( ps -> ( ph -> ch ) ) ) |
| 5 | 1 4 | luklem1 | |- ( ( ph -> -. ps ) -> ( ps -> ( ph -> ch ) ) ) |
| 6 | luk-1 | |- ( ( ps -> ( ph -> ch ) ) -> ( ( ( ph -> ch ) -> th ) -> ( ps -> th ) ) ) |
|
| 7 | 5 6 | luklem1 | |- ( ( ph -> -. ps ) -> ( ( ( ph -> ch ) -> th ) -> ( ps -> th ) ) ) |