This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Contraposition of negative in 'less than'. (Contributed by Mario Carneiro, 25-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltnegcon2 | |- ( ( A e. RR /\ B e. RR ) -> ( A < -u B <-> B < -u A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl | |- ( B e. RR -> -u B e. RR ) |
|
| 2 | ltneg | |- ( ( A e. RR /\ -u B e. RR ) -> ( A < -u B <-> -u -u B < -u A ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( A e. RR /\ B e. RR ) -> ( A < -u B <-> -u -u B < -u A ) ) |
| 4 | simpr | |- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
|
| 5 | 4 | recnd | |- ( ( A e. RR /\ B e. RR ) -> B e. CC ) |
| 6 | 5 | negnegd | |- ( ( A e. RR /\ B e. RR ) -> -u -u B = B ) |
| 7 | 6 | breq1d | |- ( ( A e. RR /\ B e. RR ) -> ( -u -u B < -u A <-> B < -u A ) ) |
| 8 | 3 7 | bitrd | |- ( ( A e. RR /\ B e. RR ) -> ( A < -u B <-> B < -u A ) ) |