This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of a pair of vectors belongs to their span. (Contributed by NM, 14-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspprid.v | |- V = ( Base ` W ) |
|
| lspprid.n | |- N = ( LSpan ` W ) |
||
| lspprid.w | |- ( ph -> W e. LMod ) |
||
| lspprid.x | |- ( ph -> X e. V ) |
||
| lspprid.y | |- ( ph -> Y e. V ) |
||
| Assertion | lspprid1 | |- ( ph -> X e. ( N ` { X , Y } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprid.v | |- V = ( Base ` W ) |
|
| 2 | lspprid.n | |- N = ( LSpan ` W ) |
|
| 3 | lspprid.w | |- ( ph -> W e. LMod ) |
|
| 4 | lspprid.x | |- ( ph -> X e. V ) |
|
| 5 | lspprid.y | |- ( ph -> Y e. V ) |
|
| 6 | 4 5 | prssd | |- ( ph -> { X , Y } C_ V ) |
| 7 | snsspr1 | |- { X } C_ { X , Y } |
|
| 8 | 7 | a1i | |- ( ph -> { X } C_ { X , Y } ) |
| 9 | 1 2 | lspss | |- ( ( W e. LMod /\ { X , Y } C_ V /\ { X } C_ { X , Y } ) -> ( N ` { X } ) C_ ( N ` { X , Y } ) ) |
| 10 | 3 6 8 9 | syl3anc | |- ( ph -> ( N ` { X } ) C_ ( N ` { X , Y } ) ) |
| 11 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 12 | 1 11 2 3 4 5 | lspprcl | |- ( ph -> ( N ` { X , Y } ) e. ( LSubSp ` W ) ) |
| 13 | 1 11 2 3 12 4 | ellspsn5b | |- ( ph -> ( X e. ( N ` { X , Y } ) <-> ( N ` { X } ) C_ ( N ` { X , Y } ) ) ) |
| 14 | 10 13 | mpbird | |- ( ph -> X e. ( N ` { X , Y } ) ) |