This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inclusion of a function having a limit (used to ensure the limit relation is a set, under our definition). (Contributed by NM, 7-Dec-2006) (Revised by Mario Carneiro, 23-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lmfss | |- ( ( J e. ( TopOn ` X ) /\ F ( ~~>t ` J ) P ) -> F C_ ( CC X. X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmfpm | |- ( ( J e. ( TopOn ` X ) /\ F ( ~~>t ` J ) P ) -> F e. ( X ^pm CC ) ) |
|
| 2 | toponmax | |- ( J e. ( TopOn ` X ) -> X e. J ) |
|
| 3 | cnex | |- CC e. _V |
|
| 4 | elpmg | |- ( ( X e. J /\ CC e. _V ) -> ( F e. ( X ^pm CC ) <-> ( Fun F /\ F C_ ( CC X. X ) ) ) ) |
|
| 5 | 2 3 4 | sylancl | |- ( J e. ( TopOn ` X ) -> ( F e. ( X ^pm CC ) <-> ( Fun F /\ F C_ ( CC X. X ) ) ) ) |
| 6 | 5 | adantr | |- ( ( J e. ( TopOn ` X ) /\ F ( ~~>t ` J ) P ) -> ( F e. ( X ^pm CC ) <-> ( Fun F /\ F C_ ( CC X. X ) ) ) ) |
| 7 | 1 6 | mpbid | |- ( ( J e. ( TopOn ` X ) /\ F ( ~~>t ` J ) P ) -> ( Fun F /\ F C_ ( CC X. X ) ) ) |
| 8 | 7 | simprd | |- ( ( J e. ( TopOn ` X ) /\ F ( ~~>t ` J ) P ) -> F C_ ( CC X. X ) ) |