This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add meet to both sides of a lattice ordering. ( sslin analog.) (Contributed by NM, 10-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latmle.b | |- B = ( Base ` K ) |
|
| latmle.l | |- .<_ = ( le ` K ) |
||
| latmle.m | |- ./\ = ( meet ` K ) |
||
| Assertion | latmlem2 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ Y -> ( Z ./\ X ) .<_ ( Z ./\ Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmle.b | |- B = ( Base ` K ) |
|
| 2 | latmle.l | |- .<_ = ( le ` K ) |
|
| 3 | latmle.m | |- ./\ = ( meet ` K ) |
|
| 4 | 1 2 3 | latmlem1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ Y -> ( X ./\ Z ) .<_ ( Y ./\ Z ) ) ) |
| 5 | 1 3 | latmcom | |- ( ( K e. Lat /\ X e. B /\ Z e. B ) -> ( X ./\ Z ) = ( Z ./\ X ) ) |
| 6 | 5 | 3adant3r2 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ Z ) = ( Z ./\ X ) ) |
| 7 | 1 3 | latmcom | |- ( ( K e. Lat /\ Y e. B /\ Z e. B ) -> ( Y ./\ Z ) = ( Z ./\ Y ) ) |
| 8 | 7 | 3adant3r1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y ./\ Z ) = ( Z ./\ Y ) ) |
| 9 | 6 8 | breq12d | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ Z ) .<_ ( Y ./\ Z ) <-> ( Z ./\ X ) .<_ ( Z ./\ Y ) ) ) |
| 10 | 4 9 | sylibd | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ Y -> ( Z ./\ X ) .<_ ( Z ./\ Y ) ) ) |