This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that a join is defined. (Contributed by NM, 9-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | joindef.u | |- U = ( lub ` K ) |
|
| joindef.j | |- .\/ = ( join ` K ) |
||
| joindef.k | |- ( ph -> K e. V ) |
||
| joindef.x | |- ( ph -> X e. W ) |
||
| joindef.y | |- ( ph -> Y e. Z ) |
||
| Assertion | joindef | |- ( ph -> ( <. X , Y >. e. dom .\/ <-> { X , Y } e. dom U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joindef.u | |- U = ( lub ` K ) |
|
| 2 | joindef.j | |- .\/ = ( join ` K ) |
|
| 3 | joindef.k | |- ( ph -> K e. V ) |
|
| 4 | joindef.x | |- ( ph -> X e. W ) |
|
| 5 | joindef.y | |- ( ph -> Y e. Z ) |
|
| 6 | 1 2 | joindm | |- ( K e. V -> dom .\/ = { <. x , y >. | { x , y } e. dom U } ) |
| 7 | 6 | eleq2d | |- ( K e. V -> ( <. X , Y >. e. dom .\/ <-> <. X , Y >. e. { <. x , y >. | { x , y } e. dom U } ) ) |
| 8 | 3 7 | syl | |- ( ph -> ( <. X , Y >. e. dom .\/ <-> <. X , Y >. e. { <. x , y >. | { x , y } e. dom U } ) ) |
| 9 | preq1 | |- ( x = X -> { x , y } = { X , y } ) |
|
| 10 | 9 | eleq1d | |- ( x = X -> ( { x , y } e. dom U <-> { X , y } e. dom U ) ) |
| 11 | preq2 | |- ( y = Y -> { X , y } = { X , Y } ) |
|
| 12 | 11 | eleq1d | |- ( y = Y -> ( { X , y } e. dom U <-> { X , Y } e. dom U ) ) |
| 13 | 10 12 | opelopabg | |- ( ( X e. W /\ Y e. Z ) -> ( <. X , Y >. e. { <. x , y >. | { x , y } e. dom U } <-> { X , Y } e. dom U ) ) |
| 14 | 4 5 13 | syl2anc | |- ( ph -> ( <. X , Y >. e. { <. x , y >. | { x , y } e. dom U } <-> { X , Y } e. dom U ) ) |
| 15 | 8 14 | bitrd | |- ( ph -> ( <. X , Y >. e. dom .\/ <-> { X , Y } e. dom U ) ) |