This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of itgeq1f as of 1-Sep-2025. (Contributed by Mario Carneiro, 28-Jun-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgeq1f.1 | |- F/_ x A |
|
| itgeq1f.2 | |- F/_ x B |
||
| Assertion | itgeq1fOLD | |- ( A = B -> S. A C _d x = S. B C _d x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgeq1f.1 | |- F/_ x A |
|
| 2 | itgeq1f.2 | |- F/_ x B |
|
| 3 | eqid | |- RR = RR |
|
| 4 | 1 2 | nfeq | |- F/ x A = B |
| 5 | eleq2 | |- ( A = B -> ( x e. A <-> x e. B ) ) |
|
| 6 | 5 | anbi1d | |- ( A = B -> ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) <-> ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) ) ) |
| 7 | 6 | ifbid | |- ( A = B -> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) = if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) |
| 8 | 7 | a1d | |- ( A = B -> ( x e. RR -> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) = if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) |
| 9 | 4 8 | ralrimi | |- ( A = B -> A. x e. RR if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) = if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) |
| 10 | mpteq12 | |- ( ( RR = RR /\ A. x e. RR if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) = if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) = ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) |
|
| 11 | 3 9 10 | sylancr | |- ( A = B -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) = ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) |
| 12 | 11 | fveq2d | |- ( A = B -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) |
| 13 | 12 | oveq2d | |- ( A = B -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) ) |
| 14 | 13 | sumeq2sdv | |- ( A = B -> sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) ) |
| 15 | eqid | |- ( Re ` ( C / ( _i ^ k ) ) ) = ( Re ` ( C / ( _i ^ k ) ) ) |
|
| 16 | 15 | dfitg | |- S. A C _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) |
| 17 | 15 | dfitg | |- S. B C _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) |
| 18 | 14 16 17 | 3eqtr4g | |- ( A = B -> S. A C _d x = S. B C _d x ) |