This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite sum divided by a constant. (Contributed by NM, 2-Jan-2006) (Revised by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumcl.1 | |- Z = ( ZZ>= ` M ) |
|
| isumcl.2 | |- ( ph -> M e. ZZ ) |
||
| isumcl.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
||
| isumcl.4 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
||
| isumcl.5 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
||
| summulc.6 | |- ( ph -> B e. CC ) |
||
| isumdivc.7 | |- ( ph -> B =/= 0 ) |
||
| Assertion | isumdivc | |- ( ph -> ( sum_ k e. Z A / B ) = sum_ k e. Z ( A / B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumcl.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | isumcl.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | isumcl.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
|
| 4 | isumcl.4 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
|
| 5 | isumcl.5 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
|
| 6 | summulc.6 | |- ( ph -> B e. CC ) |
|
| 7 | isumdivc.7 | |- ( ph -> B =/= 0 ) |
|
| 8 | 6 7 | reccld | |- ( ph -> ( 1 / B ) e. CC ) |
| 9 | 1 2 3 4 5 8 | isummulc1 | |- ( ph -> ( sum_ k e. Z A x. ( 1 / B ) ) = sum_ k e. Z ( A x. ( 1 / B ) ) ) |
| 10 | 1 2 3 4 5 | isumcl | |- ( ph -> sum_ k e. Z A e. CC ) |
| 11 | 10 6 7 | divrecd | |- ( ph -> ( sum_ k e. Z A / B ) = ( sum_ k e. Z A x. ( 1 / B ) ) ) |
| 12 | 6 | adantr | |- ( ( ph /\ k e. Z ) -> B e. CC ) |
| 13 | 7 | adantr | |- ( ( ph /\ k e. Z ) -> B =/= 0 ) |
| 14 | 4 12 13 | divrecd | |- ( ( ph /\ k e. Z ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
| 15 | 14 | sumeq2dv | |- ( ph -> sum_ k e. Z ( A / B ) = sum_ k e. Z ( A x. ( 1 / B ) ) ) |
| 16 | 9 11 15 | 3eqtr4d | |- ( ph -> ( sum_ k e. Z A / B ) = sum_ k e. Z ( A / B ) ) |