This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for hhssabloilem . (Contributed by Paul Chapman, 25-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | issubgoilem.1 | |- ( ( x e. Y /\ y e. Y ) -> ( x H y ) = ( x G y ) ) |
|
| Assertion | issubgoilem | |- ( ( A e. Y /\ B e. Y ) -> ( A H B ) = ( A G B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubgoilem.1 | |- ( ( x e. Y /\ y e. Y ) -> ( x H y ) = ( x G y ) ) |
|
| 2 | oveq1 | |- ( x = A -> ( x H y ) = ( A H y ) ) |
|
| 3 | oveq1 | |- ( x = A -> ( x G y ) = ( A G y ) ) |
|
| 4 | 2 3 | eqeq12d | |- ( x = A -> ( ( x H y ) = ( x G y ) <-> ( A H y ) = ( A G y ) ) ) |
| 5 | oveq2 | |- ( y = B -> ( A H y ) = ( A H B ) ) |
|
| 6 | oveq2 | |- ( y = B -> ( A G y ) = ( A G B ) ) |
|
| 7 | 5 6 | eqeq12d | |- ( y = B -> ( ( A H y ) = ( A G y ) <-> ( A H B ) = ( A G B ) ) ) |
| 8 | 4 7 1 | vtocl2ga | |- ( ( A e. Y /\ B e. Y ) -> ( A H B ) = ( A G B ) ) |