This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020) (Revised by AV, 9-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfusgrcl | |- ( G e. FinUSGraph <-> ( G e. USGraph /\ ( # ` ( Vtx ` G ) ) e. NN0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | 1 | isfusgr | |- ( G e. FinUSGraph <-> ( G e. USGraph /\ ( Vtx ` G ) e. Fin ) ) |
| 3 | fvex | |- ( Vtx ` G ) e. _V |
|
| 4 | hashclb | |- ( ( Vtx ` G ) e. _V -> ( ( Vtx ` G ) e. Fin <-> ( # ` ( Vtx ` G ) ) e. NN0 ) ) |
|
| 5 | 3 4 | mp1i | |- ( G e. USGraph -> ( ( Vtx ` G ) e. Fin <-> ( # ` ( Vtx ` G ) ) e. NN0 ) ) |
| 6 | 5 | pm5.32i | |- ( ( G e. USGraph /\ ( Vtx ` G ) e. Fin ) <-> ( G e. USGraph /\ ( # ` ( Vtx ` G ) ) e. NN0 ) ) |
| 7 | 2 6 | bitri | |- ( G e. FinUSGraph <-> ( G e. USGraph /\ ( # ` ( Vtx ` G ) ) e. NN0 ) ) |