This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a subcomplex module. (Contributed by NM, 5-Nov-2006) (Revised by AV, 4-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isclmp.t | |- .x. = ( .s ` W ) |
|
| isclmp.a | |- .+ = ( +g ` W ) |
||
| isclmp.v | |- V = ( Base ` W ) |
||
| isclmp.s | |- S = ( Scalar ` W ) |
||
| isclmp.k | |- K = ( Base ` S ) |
||
| isclmi0.1 | |- S = ( CCfld |`s K ) |
||
| isclmi0.2 | |- W e. Grp |
||
| isclmi0.3 | |- K e. ( SubRing ` CCfld ) |
||
| isclmi0.4 | |- ( x e. V -> ( 1 .x. x ) = x ) |
||
| isclmi0.5 | |- ( ( y e. K /\ x e. V ) -> ( y .x. x ) e. V ) |
||
| isclmi0.6 | |- ( ( y e. K /\ x e. V /\ z e. V ) -> ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) ) |
||
| isclmi0.7 | |- ( ( y e. K /\ z e. K /\ x e. V ) -> ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) ) |
||
| isclmi0.8 | |- ( ( y e. K /\ z e. K /\ x e. V ) -> ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) |
||
| Assertion | isclmi0 | |- W e. CMod |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclmp.t | |- .x. = ( .s ` W ) |
|
| 2 | isclmp.a | |- .+ = ( +g ` W ) |
|
| 3 | isclmp.v | |- V = ( Base ` W ) |
|
| 4 | isclmp.s | |- S = ( Scalar ` W ) |
|
| 5 | isclmp.k | |- K = ( Base ` S ) |
|
| 6 | isclmi0.1 | |- S = ( CCfld |`s K ) |
|
| 7 | isclmi0.2 | |- W e. Grp |
|
| 8 | isclmi0.3 | |- K e. ( SubRing ` CCfld ) |
|
| 9 | isclmi0.4 | |- ( x e. V -> ( 1 .x. x ) = x ) |
|
| 10 | isclmi0.5 | |- ( ( y e. K /\ x e. V ) -> ( y .x. x ) e. V ) |
|
| 11 | isclmi0.6 | |- ( ( y e. K /\ x e. V /\ z e. V ) -> ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) ) |
|
| 12 | isclmi0.7 | |- ( ( y e. K /\ z e. K /\ x e. V ) -> ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) ) |
|
| 13 | isclmi0.8 | |- ( ( y e. K /\ z e. K /\ x e. V ) -> ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) |
|
| 14 | 7 6 8 | 3pm3.2i | |- ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) |
| 15 | 10 | ancoms | |- ( ( x e. V /\ y e. K ) -> ( y .x. x ) e. V ) |
| 16 | 11 | 3com12 | |- ( ( x e. V /\ y e. K /\ z e. V ) -> ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) ) |
| 17 | 16 | 3expa | |- ( ( ( x e. V /\ y e. K ) /\ z e. V ) -> ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) ) |
| 18 | 17 | ralrimiva | |- ( ( x e. V /\ y e. K ) -> A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) ) |
| 19 | 12 13 | jca | |- ( ( y e. K /\ z e. K /\ x e. V ) -> ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) |
| 20 | 19 | 3comr | |- ( ( x e. V /\ y e. K /\ z e. K ) -> ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) |
| 21 | 20 | 3expa | |- ( ( ( x e. V /\ y e. K ) /\ z e. K ) -> ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) |
| 22 | 21 | ralrimiva | |- ( ( x e. V /\ y e. K ) -> A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) |
| 23 | 15 18 22 | 3jca | |- ( ( x e. V /\ y e. K ) -> ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) |
| 24 | 23 | ralrimiva | |- ( x e. V -> A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) |
| 25 | 9 24 | jca | |- ( x e. V -> ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) |
| 26 | 25 | rgen | |- A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) |
| 27 | 1 2 3 4 5 | isclmp | |- ( W e. CMod <-> ( ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) ) |
| 28 | 14 26 27 | mpbir2an | |- W e. CMod |