This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a first-countable topology." This can be described as "every point has a countable local basis" - that is, every point has a countable collection of open sets containing it such that every open set containing the point has an open set from this collection as a subset. (Contributed by Jeff Hankins, 22-Aug-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | is1stc.1 | |- X = U. J |
|
| Assertion | is1stc | |- ( J e. 1stc <-> ( J e. Top /\ A. x e. X E. y e. ~P J ( y ~<_ _om /\ A. z e. J ( x e. z -> x e. U. ( y i^i ~P z ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | is1stc.1 | |- X = U. J |
|
| 2 | unieq | |- ( j = J -> U. j = U. J ) |
|
| 3 | 2 1 | eqtr4di | |- ( j = J -> U. j = X ) |
| 4 | pweq | |- ( j = J -> ~P j = ~P J ) |
|
| 5 | raleq | |- ( j = J -> ( A. z e. j ( x e. z -> x e. U. ( y i^i ~P z ) ) <-> A. z e. J ( x e. z -> x e. U. ( y i^i ~P z ) ) ) ) |
|
| 6 | 5 | anbi2d | |- ( j = J -> ( ( y ~<_ _om /\ A. z e. j ( x e. z -> x e. U. ( y i^i ~P z ) ) ) <-> ( y ~<_ _om /\ A. z e. J ( x e. z -> x e. U. ( y i^i ~P z ) ) ) ) ) |
| 7 | 4 6 | rexeqbidv | |- ( j = J -> ( E. y e. ~P j ( y ~<_ _om /\ A. z e. j ( x e. z -> x e. U. ( y i^i ~P z ) ) ) <-> E. y e. ~P J ( y ~<_ _om /\ A. z e. J ( x e. z -> x e. U. ( y i^i ~P z ) ) ) ) ) |
| 8 | 3 7 | raleqbidv | |- ( j = J -> ( A. x e. U. j E. y e. ~P j ( y ~<_ _om /\ A. z e. j ( x e. z -> x e. U. ( y i^i ~P z ) ) ) <-> A. x e. X E. y e. ~P J ( y ~<_ _om /\ A. z e. J ( x e. z -> x e. U. ( y i^i ~P z ) ) ) ) ) |
| 9 | df-1stc | |- 1stc = { j e. Top | A. x e. U. j E. y e. ~P j ( y ~<_ _om /\ A. z e. j ( x e. z -> x e. U. ( y i^i ~P z ) ) ) } |
|
| 10 | 8 9 | elrab2 | |- ( J e. 1stc <-> ( J e. Top /\ A. x e. X E. y e. ~P J ( y ~<_ _om /\ A. z e. J ( x e. z -> x e. U. ( y i^i ~P z ) ) ) ) ) |