This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The power class of an intersection in terms of indexed intersection. Exercise 24(a) of Enderton p. 33. (Contributed by NM, 29-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iinpw | |- ~P |^| A = |^|_ x e. A ~P x |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint | |- ( y C_ |^| A <-> A. x e. A y C_ x ) |
|
| 2 | velpw | |- ( y e. ~P x <-> y C_ x ) |
|
| 3 | 2 | ralbii | |- ( A. x e. A y e. ~P x <-> A. x e. A y C_ x ) |
| 4 | 1 3 | bitr4i | |- ( y C_ |^| A <-> A. x e. A y e. ~P x ) |
| 5 | velpw | |- ( y e. ~P |^| A <-> y C_ |^| A ) |
|
| 6 | eliin | |- ( y e. _V -> ( y e. |^|_ x e. A ~P x <-> A. x e. A y e. ~P x ) ) |
|
| 7 | 6 | elv | |- ( y e. |^|_ x e. A ~P x <-> A. x e. A y e. ~P x ) |
| 8 | 4 5 7 | 3bitr4i | |- ( y e. ~P |^| A <-> y e. |^|_ x e. A ~P x ) |
| 9 | 8 | eqriv | |- ~P |^| A = |^|_ x e. A ~P x |