This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inclusion of an indexed union of a power class in the power class of the union of its index. Part of Exercise 24(b) of Enderton p. 33. (Contributed by NM, 25-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunpwss | |- U_ x e. A ~P x C_ ~P U. A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssiun | |- ( E. x e. A y C_ x -> y C_ U_ x e. A x ) |
|
| 2 | eliun | |- ( y e. U_ x e. A ~P x <-> E. x e. A y e. ~P x ) |
|
| 3 | velpw | |- ( y e. ~P x <-> y C_ x ) |
|
| 4 | 3 | rexbii | |- ( E. x e. A y e. ~P x <-> E. x e. A y C_ x ) |
| 5 | 2 4 | bitri | |- ( y e. U_ x e. A ~P x <-> E. x e. A y C_ x ) |
| 6 | velpw | |- ( y e. ~P U. A <-> y C_ U. A ) |
|
| 7 | uniiun | |- U. A = U_ x e. A x |
|
| 8 | 7 | sseq2i | |- ( y C_ U. A <-> y C_ U_ x e. A x ) |
| 9 | 6 8 | bitri | |- ( y e. ~P U. A <-> y C_ U_ x e. A x ) |
| 10 | 1 5 9 | 3imtr4i | |- ( y e. U_ x e. A ~P x -> y e. ~P U. A ) |
| 11 | 10 | ssriv | |- U_ x e. A ~P x C_ ~P U. A |