This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the object part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idfu2nda.i | |- I = ( idFunc ` C ) |
|
| idfu2nda.d | |- ( ph -> I e. ( D Func E ) ) |
||
| idfu2nda.b | |- ( ph -> B = ( Base ` D ) ) |
||
| Assertion | idfu1sta | |- ( ph -> ( 1st ` I ) = ( _I |` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfu2nda.i | |- I = ( idFunc ` C ) |
|
| 2 | idfu2nda.d | |- ( ph -> I e. ( D Func E ) ) |
|
| 3 | idfu2nda.b | |- ( ph -> B = ( Base ` D ) ) |
|
| 4 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 5 | 1 2 | eqeltrrid | |- ( ph -> ( idFunc ` C ) e. ( D Func E ) ) |
| 6 | idfurcl | |- ( ( idFunc ` C ) e. ( D Func E ) -> C e. Cat ) |
|
| 7 | 5 6 | syl | |- ( ph -> C e. Cat ) |
| 8 | 1 4 7 | idfu1st | |- ( ph -> ( 1st ` I ) = ( _I |` ( Base ` C ) ) ) |
| 9 | 1 2 3 | idfu1stalem | |- ( ph -> B = ( Base ` C ) ) |
| 10 | 9 | reseq2d | |- ( ph -> ( _I |` B ) = ( _I |` ( Base ` C ) ) ) |
| 11 | 8 10 | eqtr4d | |- ( ph -> ( 1st ` I ) = ( _I |` B ) ) |