This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two elements in a half-open interval have separationstrictly less than the difference between the endpoints. (Contributed by Stefan O'Rear, 12-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | icodiamlt | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,) B ) /\ D e. ( A [,) B ) ) ) -> ( abs ` ( C - D ) ) < ( B - A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 2 | elico2 | |- ( ( A e. RR /\ B e. RR* ) -> ( C e. ( A [,) B ) <-> ( C e. RR /\ A <_ C /\ C < B ) ) ) |
|
| 3 | elico2 | |- ( ( A e. RR /\ B e. RR* ) -> ( D e. ( A [,) B ) <-> ( D e. RR /\ A <_ D /\ D < B ) ) ) |
|
| 4 | 2 3 | anbi12d | |- ( ( A e. RR /\ B e. RR* ) -> ( ( C e. ( A [,) B ) /\ D e. ( A [,) B ) ) <-> ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) ) |
| 5 | 4 | biimpd | |- ( ( A e. RR /\ B e. RR* ) -> ( ( C e. ( A [,) B ) /\ D e. ( A [,) B ) ) -> ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) ) |
| 6 | 1 5 | sylan2 | |- ( ( A e. RR /\ B e. RR ) -> ( ( C e. ( A [,) B ) /\ D e. ( A [,) B ) ) -> ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) ) |
| 7 | simplr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> B e. RR ) |
|
| 8 | 7 | recnd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> B e. CC ) |
| 9 | simpll | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> A e. RR ) |
|
| 10 | 9 | recnd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> A e. CC ) |
| 11 | 8 10 | negsubdi2d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> -u ( B - A ) = ( A - B ) ) |
| 12 | 9 7 | resubcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> ( A - B ) e. RR ) |
| 13 | simprl1 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> C e. RR ) |
|
| 14 | 13 7 | resubcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> ( C - B ) e. RR ) |
| 15 | simprr1 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> D e. RR ) |
|
| 16 | 13 15 | resubcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> ( C - D ) e. RR ) |
| 17 | simprl2 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> A <_ C ) |
|
| 18 | 9 13 7 17 | lesub1dd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> ( A - B ) <_ ( C - B ) ) |
| 19 | simprr3 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> D < B ) |
|
| 20 | 15 7 13 19 | ltsub2dd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> ( C - B ) < ( C - D ) ) |
| 21 | 12 14 16 18 20 | lelttrd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> ( A - B ) < ( C - D ) ) |
| 22 | 11 21 | eqbrtrd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> -u ( B - A ) < ( C - D ) ) |
| 23 | 7 15 | resubcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> ( B - D ) e. RR ) |
| 24 | 7 9 | resubcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> ( B - A ) e. RR ) |
| 25 | simprl3 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> C < B ) |
|
| 26 | 13 7 15 25 | ltsub1dd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> ( C - D ) < ( B - D ) ) |
| 27 | simprr2 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> A <_ D ) |
|
| 28 | 9 15 7 27 | lesub2dd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> ( B - D ) <_ ( B - A ) ) |
| 29 | 16 23 24 26 28 | ltletrd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> ( C - D ) < ( B - A ) ) |
| 30 | 16 24 | absltd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> ( ( abs ` ( C - D ) ) < ( B - A ) <-> ( -u ( B - A ) < ( C - D ) /\ ( C - D ) < ( B - A ) ) ) ) |
| 31 | 22 29 30 | mpbir2and | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) ) -> ( abs ` ( C - D ) ) < ( B - A ) ) |
| 32 | 31 | ex | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( C e. RR /\ A <_ C /\ C < B ) /\ ( D e. RR /\ A <_ D /\ D < B ) ) -> ( abs ` ( C - D ) ) < ( B - A ) ) ) |
| 33 | 6 32 | syld | |- ( ( A e. RR /\ B e. RR ) -> ( ( C e. ( A [,) B ) /\ D e. ( A [,) B ) ) -> ( abs ` ( C - D ) ) < ( B - A ) ) ) |
| 34 | 33 | imp | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,) B ) /\ D e. ( A [,) B ) ) ) -> ( abs ` ( C - D ) ) < ( B - A ) ) |