This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert minus one times a scalar product to the negative of the scalar. (Contributed by NM, 4-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvm1neg | |- ( ( A e. CC /\ B e. ~H ) -> ( -u 1 .h ( A .h B ) ) = ( -u A .h B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1cn | |- -u 1 e. CC |
|
| 2 | ax-hvmulass | |- ( ( -u 1 e. CC /\ A e. CC /\ B e. ~H ) -> ( ( -u 1 x. A ) .h B ) = ( -u 1 .h ( A .h B ) ) ) |
|
| 3 | 1 2 | mp3an1 | |- ( ( A e. CC /\ B e. ~H ) -> ( ( -u 1 x. A ) .h B ) = ( -u 1 .h ( A .h B ) ) ) |
| 4 | mulm1 | |- ( A e. CC -> ( -u 1 x. A ) = -u A ) |
|
| 5 | 4 | adantr | |- ( ( A e. CC /\ B e. ~H ) -> ( -u 1 x. A ) = -u A ) |
| 6 | 5 | oveq1d | |- ( ( A e. CC /\ B e. ~H ) -> ( ( -u 1 x. A ) .h B ) = ( -u A .h B ) ) |
| 7 | 3 6 | eqtr3d | |- ( ( A e. CC /\ B e. ~H ) -> ( -u 1 .h ( A .h B ) ) = ( -u A .h B ) ) |